百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

对不起,我把APP也给爬了(对不起我把一切搞砸了英文)

bigegpt 2025-04-30 15:25 16 浏览

最近很多小伙伴对爬取手机App和小程序感兴趣,今天本厨师将给大家呈现这道菜,供小伙伴们品尝。

相信大家都对爬虫有一定的了解,我们爬PC端时候可以打开F12去观察url的变化,那么手机的发出请求我们应该怎么拦截呢。

今天的主菜就是给大家介绍一个抓包工具Fiddler,并用它烹煮一道广州房价爬虫。

Fiddler是一个http调试工具,也仅限于拦截http协议的请求,这是它的短板之处,但是对于我们平常的练习运用也足够了,因为大多数网站都是走http协议。跟Fiddler同类型的抓包工具还有很多。


我先教大家怎么设置Fiddler。

主要三个步骤:

1、安装软件后,打开Fiddler的Tools选项,进行第一步,分别对General,HTTPS,Connections窗口进行如下设置。

把该勾上的勾上后,我们回到HTTPS这个界面,点击Actions,选择Trust,安装证书。

这时候我们的PC端的洗菜流程已经完成啦。

2、接下来我们就要设置手机端,我们既然要通过PC端拦截手机发出的请求,就要设置手机的网络跟PC是同一个。

网络下,所以第二步,我们要更改手机ip。我们先来看看你的PC端ip是多少。先打开cmd进入终端后,输入ipconfig回车。

就可以看到你的ip地址了。


这时候终于轮到你的宝贝手机出场了,熟练的连上你的wifi之后,修改你的wifi设置,点击高级选项后,分别输入你的ip和端口后保存。

3、大家是不是觉得很简单呢,别高兴太早了!最关键的一步到了,在我们完成第一、二步设置后,打开你的手机浏览器输入你的ip和端口号(例127.0.0.1:8080),回车,这时候会跳转到一个下载手机端证书的页面,下载后并信任证书后(注:某些安卓手机会要获得root权限才行),这时候,我们安装三部曲就大功告成了。

万事俱备,只欠东风,食材都清洗好了,现在我就教大家怎么利用Fiddler烹煮小程序。


抓包实战


先打开一个小程序网站,我选择的是Q房网,大家看,菜下锅后,Fiddler是不是变化了。

这就是用fiddler拦截到你的手机发出请求的网页信息了和它的链接,这个网页信息是通过json数据加载的。

然后往上看,Raw模块是获取请求头的地方。

有了这两个信息,我们的爬虫代码也就可以开始编写了。


爬虫代码


基操requests,循环页数,由于是获取的数据是json格式,我们就要利用json.loads格式化抓取的信息,才能进行一个数据提取。


url = 'https://mapi.qfang.com/wechat/api/v3_2_0/room?dataSource=GUANGZHOU&unionId=这里也是微信id&platform=wechat&bizType=SALE¤tPage={}&pageSize=20&keyword=(R)ion=&l=&s=&p=&b=&a=&r=&h=&g=&t=&o=&fromPrice=&toPrice=&unitPrice=&fromUnitPrice=&toUnitPrice='
#爬取到50页,程序就停止
for i in range(1,51):
    time.sleep(rand_seconds)
    url3 = url.format(i)
    # print(url3)
    res = session.get(url=url3, headers=headers)
    # print(res.text)
    data = json.loads(res.text)
    try:
        id_list = data['result']['list']
        # print(333,id_list)
        for i in id_list:
            id = i['id']
            # print(id)
            url2 = 'https://mapi.qfang.com/wechat/api/v3_2_0/room/detail?dataSource=GUANGZHOU&unionId=这里也是微信id&platform=wechat&id={}&bizType=SALE&userId=&accountLinkId=&top=1&origin=sale-list'.format(
                id)
            time.sleep(rand_seconds)
            try:
                requests.adapters.DEFAULT_RETRIES = 3
                res2 = session.get(url=url2, headers=headers, timeout=10)
            except requests.exceptions.ConnectionError:
                requests.adapters.DEFAULT_RETRIES = 3
                res2 = session.get(url=url2, headers=headers, timeout=10)
            except requests.exceptions.ReadTimeout:
                requests.adapters.DEFAULT_RETRIES = 3
                res2 = session.get(url=url2, headers=headers, timeout=10)
            item = {}
            res2_data = json.loads(res2.text)
            try:
                roominfo = res2_data['result']['roomInfo']
            except KeyError:
                break

爬取数据结果:

数据可视化


菜做好了,当然还要撒点香菜才能上桌啦,做个简单可视化吧,由于爬取的数据很干净,我省掉清洗数据的环节,直接上手,在各位群大佬面前献丑了。

我们先来看看该网站的广州二手房的最高价和最低价,这最高价的数字太感人了.... 这多少个0我都数不对。

import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv(r'F:\PycharmProjects\house_spider\广州二手房.csv', encoding='gbk')
# print(df)
df = df.astype({'price': 'float64'})  #先将价格的类型转为浮点数,方便后面计算
df_max = df['price'].max()  #查看爬取的数据中房价最高的价格
df_min =df['price'].min()  #房价最低的价格
print('广州二手房最高价:%s,最低价:%s'%(df_max,df_min))
re_price = ['region', 'price']

# 分组统计数量
price_df = df[re_price]
# #根据区域价格计算区域房价均价
region_mean_price = price_df.groupby(['region'],as_index=False)['price'].agg({'mean_price':'mean'})
region_mean_price = region_mean_price.sort_values(by='mean_price')
print(region_mean_price)

#利用循环提取已经处理好的区域和它的均值
for x,y in zip(region_mean_price.region, region_mean_price.mean_price):
    plt.text(x, y,'%.0f' %y, ha='center', va= 'bottom',fontsize=11)

# 显示柱状图值
plt.bar(region_mean_price.region, region_mean_price.mean_price, width=0.8, color='rgby')
plt.show()

继续继续,我们来统计一下广州各区的房价,然后算出各个区域均值,通过groupby分组统计出region_mean_price

(原来黄埔房价都那么高了,各网站数据的差异性也会导致最终展示的结果不一样,大家可以选个大网站试试)

到此,我们这次利用工具抓包小程序网站的介绍就结束了,大家也可以试试app,原理一样。


相关推荐

当Frida来“敲”门(frida是什么)

0x1渗透测试瓶颈目前,碰到越来越多的大客户都会将核心资产业务集中在统一的APP上,或者对自己比较重要的APP,如自己的主业务,办公APP进行加壳,流量加密,投入了很多精力在移动端的防护上。而现在挖...

服务端性能测试实战3-性能测试脚本开发

前言在前面的两篇文章中,我们分别介绍了性能测试的理论知识以及性能测试计划制定,本篇文章将重点介绍性能测试脚本开发。脚本开发将分为两个阶段:阶段一:了解各个接口的入参、出参,使用Python代码模拟前端...

Springboot整合Apache Ftpserver拓展功能及业务讲解(三)

今日分享每天分享技术实战干货,技术在于积累和收藏,希望可以帮助到您,同时也希望获得您的支持和关注。架构开源地址:https://gitee.com/msxyspringboot整合Ftpserver参...

Linux和Windows下:Python Crypto模块安装方式区别

一、Linux环境下:fromCrypto.SignatureimportPKCS1_v1_5如果导包报错:ImportError:Nomodulenamed'Crypt...

Python 3 加密简介(python des加密解密)

Python3的标准库中是没多少用来解决加密的,不过却有用于处理哈希的库。在这里我们会对其进行一个简单的介绍,但重点会放在两个第三方的软件包:PyCrypto和cryptography上,我...

怎样从零开始编译一个魔兽世界开源服务端Windows

第二章:编译和安装我是艾西,上期我们讲述到编译一个魔兽世界开源服务端环境准备,那么今天跟大家聊聊怎么编译和安装我们直接进入正题(上一章没有看到的小伙伴可以点我主页查看)编译服务端:在D盘新建一个文件夹...

附1-Conda部署安装及基本使用(conda安装教程)

Windows环境安装安装介质下载下载地址:https://www.anaconda.com/products/individual安装Anaconda安装时,选择自定义安装,选择自定义安装路径:配置...

如何配置全世界最小的 MySQL 服务器

配置全世界最小的MySQL服务器——如何在一块IntelEdison为控制板上安装一个MySQL服务器。介绍在我最近的一篇博文中,物联网,消息以及MySQL,我展示了如果Partic...

如何使用Github Action来自动化编译PolarDB-PG数据库

随着PolarDB在国产数据库领域荣膺桂冠并持续获得广泛认可,越来越多的学生和技术爱好者开始关注并涉足这款由阿里巴巴集团倾力打造且性能卓越的关系型云原生数据库。有很多同学想要上手尝试,却卡在了编译数据...

面向NDK开发者的Android 7.0变更(ndk android.mk)

订阅Google官方微信公众号:谷歌开发者。与谷歌一起创造未来!受Android平台其他改进的影响,为了方便加载本机代码,AndroidM和N中的动态链接器对编写整洁且跨平台兼容的本机...

信创改造--人大金仓(Kingbase)数据库安装、备份恢复的问题纪要

问题一:在安装KingbaseES时,安装用户对于安装路径需有“读”、“写”、“执行”的权限。在Linux系统中,需要以非root用户执行安装程序,且该用户要有标准的home目录,您可...

OpenSSH 安全漏洞,修补操作一手掌握

1.漏洞概述近日,国家信息安全漏洞库(CNNVD)收到关于OpenSSH安全漏洞(CNNVD-202407-017、CVE-2024-6387)情况的报送。攻击者可以利用该漏洞在无需认证的情况下,通...

Linux:lsof命令详解(linux lsof命令详解)

介绍欢迎来到这篇博客。在这篇博客中,我们将学习Unix/Linux系统上的lsof命令行工具。命令行工具是您使用CLI(命令行界面)而不是GUI(图形用户界面)运行的程序或工具。lsoflsof代表&...

幻隐说固态第一期:固态硬盘接口类别

前排声明所有信息来源于网络收集,如有错误请评论区指出更正。废话不多说,目前固态硬盘接口按速度由慢到快分有这几类:SATA、mSATA、SATAExpress、PCI-E、m.2、u.2。下面我们来...

新品轰炸 影驰SSD多款产品登Computex

分享泡泡网SSD固态硬盘频道6月6日台北电脑展作为全球第二、亚洲最大的3C/IT产业链专业展,吸引了众多IT厂商和全球各地媒体的热烈关注,全球存储新势力—影驰,也积极参与其中,为广大玩家朋友带来了...