对不起,我把APP也给爬了(对不起我把一切搞砸了英文)
bigegpt 2025-04-30 15:25 5 浏览
最近很多小伙伴对爬取手机App和小程序感兴趣,今天本厨师将给大家呈现这道菜,供小伙伴们品尝。
相信大家都对爬虫有一定的了解,我们爬PC端时候可以打开F12去观察url的变化,那么手机的发出请求我们应该怎么拦截呢。
今天的主菜就是给大家介绍一个抓包工具Fiddler,并用它烹煮一道广州房价爬虫。
Fiddler是一个http调试工具,也仅限于拦截http协议的请求,这是它的短板之处,但是对于我们平常的练习运用也足够了,因为大多数网站都是走http协议。跟Fiddler同类型的抓包工具还有很多。
我先教大家怎么设置Fiddler。
主要三个步骤:
1、安装软件后,打开Fiddler的Tools选项,进行第一步,分别对General,HTTPS,Connections窗口进行如下设置。
把该勾上的勾上后,我们回到HTTPS这个界面,点击Actions,选择Trust,安装证书。
这时候我们的PC端的洗菜流程已经完成啦。
2、接下来我们就要设置手机端,我们既然要通过PC端拦截手机发出的请求,就要设置手机的网络跟PC是同一个。
网络下,所以第二步,我们要更改手机ip。我们先来看看你的PC端ip是多少。先打开cmd进入终端后,输入ipconfig回车。
就可以看到你的ip地址了。
这时候终于轮到你的宝贝手机出场了,熟练的连上你的wifi之后,修改你的wifi设置,点击高级选项后,分别输入你的ip和端口后保存。
3、大家是不是觉得很简单呢,别高兴太早了!最关键的一步到了,在我们完成第一、二步设置后,打开你的手机浏览器输入你的ip和端口号(例127.0.0.1:8080),回车,这时候会跳转到一个下载手机端证书的页面,下载后并信任证书后(注:某些安卓手机会要获得root权限才行),这时候,我们安装三部曲就大功告成了。
万事俱备,只欠东风,食材都清洗好了,现在我就教大家怎么利用Fiddler烹煮小程序。
抓包实战
先打开一个小程序网站,我选择的是Q房网,大家看,菜下锅后,Fiddler是不是变化了。
这就是用fiddler拦截到你的手机发出请求的网页信息了和它的链接,这个网页信息是通过json数据加载的。
然后往上看,Raw模块是获取请求头的地方。
有了这两个信息,我们的爬虫代码也就可以开始编写了。
爬虫代码
基操requests,循环页数,由于是获取的数据是json格式,我们就要利用json.loads格式化抓取的信息,才能进行一个数据提取。
url = 'https://mapi.qfang.com/wechat/api/v3_2_0/room?dataSource=GUANGZHOU&unionId=这里也是微信id&platform=wechat&bizType=SALE¤tPage={}&pageSize=20&keyword=(R)ion=&l=&s=&p=&b=&a=&r=&h=&g=&t=&o=&fromPrice=&toPrice=&unitPrice=&fromUnitPrice=&toUnitPrice='
#爬取到50页,程序就停止
for i in range(1,51):
time.sleep(rand_seconds)
url3 = url.format(i)
# print(url3)
res = session.get(url=url3, headers=headers)
# print(res.text)
data = json.loads(res.text)
try:
id_list = data['result']['list']
# print(333,id_list)
for i in id_list:
id = i['id']
# print(id)
url2 = 'https://mapi.qfang.com/wechat/api/v3_2_0/room/detail?dataSource=GUANGZHOU&unionId=这里也是微信id&platform=wechat&id={}&bizType=SALE&userId=&accountLinkId=&top=1&origin=sale-list'.format(
id)
time.sleep(rand_seconds)
try:
requests.adapters.DEFAULT_RETRIES = 3
res2 = session.get(url=url2, headers=headers, timeout=10)
except requests.exceptions.ConnectionError:
requests.adapters.DEFAULT_RETRIES = 3
res2 = session.get(url=url2, headers=headers, timeout=10)
except requests.exceptions.ReadTimeout:
requests.adapters.DEFAULT_RETRIES = 3
res2 = session.get(url=url2, headers=headers, timeout=10)
item = {}
res2_data = json.loads(res2.text)
try:
roominfo = res2_data['result']['roomInfo']
except KeyError:
break
爬取数据结果:
数据可视化
菜做好了,当然还要撒点香菜才能上桌啦,做个简单可视化吧,由于爬取的数据很干净,我省掉清洗数据的环节,直接上手,在各位群大佬面前献丑了。
我们先来看看该网站的广州二手房的最高价和最低价,这最高价的数字太感人了.... 这多少个0我都数不对。
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv(r'F:\PycharmProjects\house_spider\广州二手房.csv', encoding='gbk')
# print(df)
df = df.astype({'price': 'float64'}) #先将价格的类型转为浮点数,方便后面计算
df_max = df['price'].max() #查看爬取的数据中房价最高的价格
df_min =df['price'].min() #房价最低的价格
print('广州二手房最高价:%s,最低价:%s'%(df_max,df_min))
re_price = ['region', 'price']
# 分组统计数量
price_df = df[re_price]
# #根据区域价格计算区域房价均价
region_mean_price = price_df.groupby(['region'],as_index=False)['price'].agg({'mean_price':'mean'})
region_mean_price = region_mean_price.sort_values(by='mean_price')
print(region_mean_price)
#利用循环提取已经处理好的区域和它的均值
for x,y in zip(region_mean_price.region, region_mean_price.mean_price):
plt.text(x, y,'%.0f' %y, ha='center', va= 'bottom',fontsize=11)
# 显示柱状图值
plt.bar(region_mean_price.region, region_mean_price.mean_price, width=0.8, color='rgby')
plt.show()
继续继续,我们来统计一下广州各区的房价,然后算出各个区域均值,通过groupby分组统计出region_mean_price
(原来黄埔房价都那么高了,各网站数据的差异性也会导致最终展示的结果不一样,大家可以选个大网站试试)
到此,我们这次利用工具抓包小程序网站的介绍就结束了,大家也可以试试app,原理一样。
相关推荐
- 得物可观测平台架构升级:基于GreptimeDB的全新监控体系实践
-
一、摘要在前端可观测分析场景中,需要实时观测并处理多地、多环境的运行情况,以保障Web应用和移动端的可用性与性能。传统方案往往依赖代理Agent→消息队列→流计算引擎→OLAP存储...
- warm-flow新春版:网关直连和流程图重构
-
本期主要解决了网关直连和流程图重构,可以自此之后可支持各种复杂的网关混合、多网关直连使用。-新增Ruoyi-Vue-Plus优秀开源集成案例更新日志[feat]导入、导出和保存等新增json格式支持...
- 扣子空间体验报告
-
在数字化时代,智能工具的应用正不断拓展到我们工作和生活的各个角落。从任务规划到项目执行,再到任务管理,作者深入探讨了这款工具在不同场景下的表现和潜力。通过具体的应用实例,文章展示了扣子空间如何帮助用户...
- spider-flow:开源的可视化方式定义爬虫方案
-
spider-flow简介spider-flow是一个爬虫平台,以可视化推拽方式定义爬取流程,无需代码即可实现一个爬虫服务。spider-flow特性支持css选择器、正则提取支持JSON/XML格式...
- solon-flow 你好世界!
-
solon-flow是一个基础级的流处理引擎(可用于业务规则、决策处理、计算编排、流程审批等......)。提供有“开放式”驱动定制支持,像jdbc有mysql或pgsql等驱动,可...
- 新一代开源爬虫平台:SpiderFlow
-
SpiderFlow:新一代爬虫平台,以图形化方式定义爬虫流程,不写代码即可完成爬虫。-精选真开源,释放新价值。概览Spider-Flow是一个开源的、面向所有用户的Web端爬虫构建平台,它使用Ja...
- 通过 SQL 训练机器学习模型的引擎
-
关注薪资待遇的同学应该知道,机器学习相关的岗位工资普遍偏高啊。同时随着各种通用机器学习框架的出现,机器学习的门槛也在逐渐降低,训练一个简单的机器学习模型变得不那么难。但是不得不承认对于一些数据相关的工...
- 鼠须管输入法rime for Mac
-
鼠须管输入法forMac是一款十分新颖的跨平台输入法软件,全名是中州韵输入法引擎,鼠须管输入法mac版不仅仅是一个输入法,而是一个输入法算法框架。Rime的基础架构十分精良,一套算法支持了拼音、...
- Go语言 1.20 版本正式发布:新版详细介绍
-
Go1.20简介最新的Go版本1.20在Go1.19发布六个月后发布。它的大部分更改都在工具链、运行时和库的实现中。一如既往,该版本保持了Go1的兼容性承诺。我们期望几乎所...
- iOS 10平台SpriteKit新特性之Tile Maps(上)
-
简介苹果公司在WWDC2016大会上向人们展示了一大批新的好东西。其中之一就是SpriteKitTileEditor。这款工具易于上手,而且看起来速度特别快。在本教程中,你将了解关于TileE...
- 程序员简历例句—范例Java、Python、C++模板
-
个人简介通用简介:有良好的代码风格,通过添加注释提高代码可读性,注重代码质量,研读过XXX,XXX等多个开源项目源码从而学习增强代码的健壮性与扩展性。具备良好的代码编程习惯及文档编写能力,参与多个高...
- Telerik UI for iOS Q3 2015正式发布
-
近日,TelerikUIforiOS正式发布了Q32015。新版本新增对XCode7、Swift2.0和iOS9的支持,同时还新增了对数轴、不连续的日期时间轴等;改进TKDataPoin...
- ios使用ijkplayer+nginx进行视频直播
-
上两节,我们讲到使用nginx和ngixn的rtmp模块搭建直播的服务器,接着我们讲解了在Android使用ijkplayer来作为我们的视频直播播放器,整个过程中,需要注意的就是ijlplayer编...
- IOS技术分享|iOS快速生成开发文档(一)
-
前言对于开发人员而言,文档的作用不言而喻。文档不仅可以提高软件开发效率,还能便于以后的软件开发、使用和维护。本文主要讲述Objective-C快速生成开发文档工具appledoc。简介apple...
- macOS下配置VS Code C++开发环境
-
本文介绍在苹果macOS操作系统下,配置VisualStudioCode的C/C++开发环境的过程,本环境使用Clang/LLVM编译器和调试器。一、前置条件本文默认前置条件是,您的开发设备已...
- 一周热门
- 最近发表
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- resize函数 (64)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- mybatis大于等于 (64)
- xcode-select (66)
- httperror403.14-forbidden (63)
- logstashinput (65)
- hadoop端口 (65)
- dockernetworkconnect (63)
- esxi7 (63)
- vue阻止冒泡 (67)
- c#for循环 (63)
- oracle时间戳转换日期 (64)
- jquery跨域 (68)
- php写入文件 (73)
- java大写转小写 (63)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)