准确性检验 (ROC曲线)的SPSS操作教程及结果解读
bigegpt 2025-05-27 12:48 5 浏览
作者/风仕
在上一期,我们已经讲完了诊断试验的基础知识,这期开始讲准确性检验 (ROC曲线),我们主要从准确性检验 (ROC曲线)的介绍、基本概念、绘制原理、统计量、使用条件及案例的SPSS操作演示这几方面进行讲解。
准确性检验 (ROC曲线)介绍
ROC 曲线:对诊断方法的准确性评价,欲知一种检测方法的准确性,则一定需要一个可以 信赖的标准(金标准),如同要判定一个考生的考试成绩,就需要知道其考卷的标准答案一样。 在临床实践中,金标准可能费时费力,所以试图寻找一个可以替代的检测方法,这就是ROC曲线的应用。ROC 曲线要求资料为连续变量或等级变量,以金标准为分组依据,图示灵敏度和特异度来探讨该方法的准确性。同时也可以探讨多种替代方法之间的优劣,所采用的软件为 SPSS。
ROC曲线的基本概念
1.ROC曲线上各点反映的都是相同的感受性,通过对疾病组和参照组的测定结果进行分析,确定测定值的上下限、组距以及截断点,按选择的组距间隔列出累积频数分布表,并分别计算出所有截断点的真阳性率(灵敏度)、特异性和假阳性率(1-特异性),作图绘成ROC曲线。灵敏度(sensitivity),即敏感度,是指筛检方法能将实际有病的人正确地判定为患者的比例。特异度(specificity),是指筛检方法能将实际无病的人正确地判定为非患者的比例。
2.单条ROC曲线的解释:一个优良的诊断试验其ROC曲线应当从左下角垂直上升至顶线,然后水平方向向右延伸到右上角。如果ROC曲线沿着对角线方向分布,表示分类是机遇造成的,正确分类和错分的概率各为50%, 此时该诊断方法完全无效。
3.两条ROC曲线的解释:如果有两种新方法同时测量各标本,则绘制两条ROC曲线。如果两条曲线不交叉,那么可以比较两个实验的优劣:更外面的、离对角线更远的曲线,其灵敏度和特异度均高于里面的、离对角线更近的曲线。
ROC曲线的绘制原理
若检测结果为定量资料或等级资料,当选择不同检测值作为判断阳性、阴性结果的阈值时可以分别计算出相对应的特异度和灵敏度,以(1 -特异度)为横轴,灵敏度为纵轴,将坐标轴以(1 -特异度,灵敏度)的数据点描绘于平面直角坐标系,将各点连接起来的曲线则为ROC曲线。
ROC曲线中的统计量
1.曲线下面积(AUC):AUC的值来评价诊断效果,其在1.0和0.5之间。当AUC>0.5时,AUC越接近于1,说明诊断效果越好:AUC在 0.5~0.7时,准确性较低;在0.7~0.9时,有一定准确性;AUC在0.9以上时,准确性较高。AUC=0.5时,说明诊断方法完全不起作用,无诊断价值。AUC<0.5不符合真实情况,在实际中极少出现。
2.约登指数、灵敏度和特异度 约登指数(Youden Index),也称正确指数,是在假定假阴性(漏诊率)和假阳性(误诊率)的危害性有同等意义时常用的方法,其反映了真正的患者与非患者的总能力。约登指数是灵敏度与特异度的和减去1,约登指数越大说明真实性越大。同时,约登指数最大值对应的检验变量值是该方法的诊断临界值。
ROC曲线比较方法和适用条件
一般来说,对于两种诊断方法可以有成组比较法和配对比较法,成组比较法是两种诊断方法作用于不同受试者,配对比较法则是针对于同一受试者接受两种不同的诊断方法。ROC曲线适用于二分类别的反映效果或结果的变量。
案例的SPSS操作演示
分析示例
某医师对经过金标准诊断的55名患者、45名正常人分别进行两种诊断实验检查,结果见下表。绘制ROC曲线。
数据录入
1. 变量视图
名称 id 标签 受试对象
名称 diag 标签 金标准诊断 值:0=正常;1=患者
名称 test1 标签 检测1
名称 test2 标签 检测2
2.数据视图(部分)
操作流程
下图为ROC曲线的主对话框。
检验变量:即需要研究的检测方法。如本例的两种检测方法:检测1和检测2。
状态变量:通过金标准诊断所确定的各受试对象的结果:患者还是正常人。而下面的状态 变量的值(V) 需要输入表示患者的值,本例中1=患者,0=正常人,所以此处填入1。
ROC曲线:为默认选项,即绘制ROC曲线图形。
带对角参考线:为 ROC曲线图形添加对角参考线。
标准误和置信区间:计算和显示曲线下面积、标准误和可信区间。
结果解释
1.下表为资料概括,经过金标准诊断,共有患者55例,正常人45例。在本例当中检测值越高,就越有可能为患者。
2.下图为ROC曲线,由此可见检测1的效果远远好于检测2,至于两者面积的具体值,见下表。
3. 检测1的ROC曲线下面积为0.947,标准误为0.024,其95%的可信区间为(0.900, 0.994);检测2的ROC曲线下面积为0.679,标准误为0.053,其95%的可信区间为(0.574, 0.784)。
ROC曲线下面积取值范围为0.5~1.0,一般来说,ROC曲线下面积在0.5~0.7之间表示 诊断价值较低,在0.7~0.9之间表示诊断价值中等,0.9以上表示诊断价值较高。
检测1和检测2的渐进Sig 均<0.01,该检验的假设是检测方法总体 ROC曲线下面积是 否为0.5,即该检测方法是否无效,经检验,这两种方法均有效。
注意事项
本例中检测值越高,越可能为患者;还有另外一种情况,检测值越低,越可能是患者,如低 血糖患者检测,当血糖值越低,就越可能为患者。此时需要在ROC曲线选项对话框中进行选择,见下图:
检测方向
1.较大的检验结果表示更明确的检验此为默认选项,表示检测值越大,越可能为患者,如本例。
2.较小的检验结果表示更明确的检验 如果检测值越小,越可能为患者,则需要选择此项。如低血糖患者。
参考:《临床医学研究中的统计分析和图形表达实例详解》
欢迎关注我,让你身边多一位熟悉统计分析方法的帮手,有以下付费视频或服务可供选购:
1.单个问题答疑咨询。1对1答疑、小额付费、48小时内有效。
2.答疑咨询年度会员。一年365天时限内各种统计分析问题1对1答疑,性价比高。
3.购买视频课程赠送课程相关主题内容1对1答疑1年。
- 上一篇:SPSS:ROC 曲线为什么反了?
- 下一篇:超强,必会的机器学习评估指标
相关推荐
- 机器学习分类模型评估(三)-F值(F-Measure)、AUC、P-R曲线
-
概述上二篇文章分别讲述了准确率(accuracy)、精确率(Precision)、查准类、召回率(Recall)、查全率、ROC曲线,本文讲述机器学习分类模型评估中的F值(F-Measure)、AUC...
- SPSS ROC曲线诊断临界值确定
-
ROC曲线是在临床医学和流行病学研究中一种常用的在诊断试验、预测模型中用于决定最佳临界点的方法。ROC曲线用真阳性率和假阳性率作图得出曲线,其横轴表示假阳性率(1-特异度),纵轴表示真阳性率(灵敏度)...
- 分类器模型检测--ROC曲线和AUC值
-
在监督学习建模中有一个重要的模块是模块的检测,就是怎样判断一个模型的好坏?那么常用的的检测的指标有P值、R值、F值、ROC曲线、AUC值等,今天来学习他们都是怎么来的,有什么用处。这里为二分类问题,即...
- 【Python机器学习系列】建立梯度提升模型预测心脏疾病
-
这是Python机器学习系列原创文章,我的第204篇原创文章。一、引言对于表格数据,一套完整的机器学习建模流程如下:针对不同的数据集,有些步骤不适用即不需要做,其中橘红色框为必要步骤,由于数据质量较高...
- 如何Keras自动编码器给极端罕见事件分类
-
全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...
- 机器学习分类问题:9个常用的评估指标总结
-
对机器学习的评估度量是机器学习核心部分,本文总结分类问题常用的metrics分类问题评估指标在这里,将讨论可用于评估分类问题预测的各种性能指标1ConfusionMatrix这是衡量分类问题性能的...
- 基于R语言的ROC曲线绘制及最佳阈值点(Cutoff)选择
-
ROC曲线在介绍ROC曲线之前,我们首先需要介绍混淆矩阵(ConfusionMatrix)。在统计分类模型的评估过程中分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来的表格...
- R数据分析:多分类问题预测模型的ROC做法及解释
-
有同学做了个多分类的预测模型,结局有三个类别,做的模型包括多分类逻辑回归、随机森林和决策树,多分类逻辑回归是用ROC曲线并报告AUC作为模型评估的,后面两种模型报告了混淆矩阵,审稿人就提出要统一模型评...
- SPSS实战:多个指标ROC曲线方向不一致的解决办法汇总(收藏)
-
在诊断实验和预测模型的临床效能评价中,我们常常用到ROC曲线分析。在SPSS中绘制ROC曲线操作比较简单,但如果将多个指标的ROC曲线绘制在同一个图中,有时候会碰到有些指标的ROC曲线在对角线上面,一...
- 小果教你快速分析ROC生存曲线图
-
尔云间一个专门做科研的团队原创小果生信果小伙伴们,大家好呀,很高兴和大家见面,前段时间应小伙伴出的解读ROC曲线图,小伙伴反应很是积极,这不最近小伙伴对于不同年份的ROC曲线图的分析呼声很高,...
- 生信文章中高频出现、模型评估必备分析——ROC曲线图,怎么看?
-
尔云间一个专门做科研的团队关注我们做了生信分析,拿到一堆数据,看不懂图怎么办?火山图、热图、散点图、箱线图、瀑布图···这么多类型的图都咋看?风险模型预后评估图、GO-KEGG富集分析图、GSEA...
- 如何看懂文献里那些图——ROC曲线图
-
ROC曲线的基本思想是把敏感度和特异性看作一个连续变化的过程,用一条曲线描述诊断系统的性能,其制作原理是在连续变量中不同界值点处计算相对应的灵敏度和特异度,然后以敏感度为纵坐标、1-特异性为横坐标绘制...
- 超强,必会的机器学习评估指标
-
大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...
- 准确性检验 (ROC曲线)的SPSS操作教程及结果解读
-
作者/风仕在上一期,我们已经讲完了诊断试验的基础知识,这期开始讲准确性检验(ROC曲线),我们主要从准确性检验(ROC曲线)的介绍、基本概念、绘制原理、统计量、使用条件及案例的SPSS操作演示这几...
- SPSS:ROC 曲线为什么反了?
-
【作者介绍】李志辉,长期从事各类统计软件应用研究,主编或参编SPSS、MINITAB、STATISTICA多个统计软件教材共8本。代表作:电子工业出版社《SPSS常用统计分析教程(SPSS22.0中...
- 一周热门
- 最近发表
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- resize函数 (64)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- mybatis大于等于 (64)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- skip-name-resolve (63)
- linuxlink (65)
- httperror403.14-forbidden (63)
- logstashinput (65)
- hadoop端口 (65)
- vue阻止冒泡 (67)
- oracle时间戳转换日期 (64)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)