百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

如何Keras自动编码器给极端罕见事件分类

bigegpt 2025-05-27 12:49 5 浏览

全文共7940字,预计学习时长30分钟或更长




本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。

现实生活中罕见事件的数据集:



背景


1. 什么是极端罕见事件?

在罕见事件问题中,数据集是不平衡的。也就是说,正样本比负样本数量少。典型罕见事件问题的正样本数约占总数的5-10%。而在极端罕见的事件问题中,正样本数据只有不到1%。例如,本文使用的数据集里,这一比例只有约0.6%。

这种极端罕见的事件问题在现实世界中非常常见,例如,工厂中的机器故障或在网上点击购买时页面失踪。

对这些罕见事件进行分类非常有挑战性。近来,深度学习被广泛应用于分类中。然而正样本数太少不利于深度学习的应用。不论数据总量多大,深度学习的使用都会受制于阳性数据的数量。

2. 为什么要使用深度学习?

这个问题很合理。为什么不考虑使用其他机器学习方法呢?

答案很主观。我们总是可以采用某种机器学习方法来达到目的。为了使其成功,可以对负样本数据进行欠采样,以获得接近更平衡的数据集。由于只有0.6%的正样本数据,欠采样将会导致数据集大小约为原始数据集的1%。机器学习方法如SVM或Random Forest仍然适用于这种大小的数据集。然而,其准确性将受到限制。剩下约99%的数据中的信息将无法使用。

如果数据足够的话,深度学习或许更有效。它还能通过使用不同的体系结构实现模型改进的灵活性。因此,我们选择尝试使用深度学习的方法。

在本文中,我们将学习如何使用一个简单的全连接层自动编码器来构建罕见事件分类器。本文是为了演示如何使用自动编码器来实现极端罕见事件分类器的构建。用户可以自行探索自动编码器的不同架构和配置。


用自动编码器进行分类


用自动编码器分类类似于异常检测。在异常检测中,先学习正常过程的模式。任何不遵循此模式的都被归类为异常。对于罕见事件的二进制分类,可以采用类似的方法使用自动编码器。

1. 什么是自动编码器?

· 自动编码器由编码器和解码器两个模块组成。

· 编码器学习某一进程的隐含特性。这些特性通常在一个降低的维度中。

· 解码器可以根据这些隐含特性重新创建原始数据。




2. 如何使用自动编码器构建罕见事件分类?

· 将数据分为正标记和负标记两部分。

· 负标记的数据视为正常状态——无事件。

· 忽略正标记的数据,用负标记数据训练自动编码器。

· 所以重构误差的概率就很小。

· 然而,如果试图从稀有事件中重构数据,自动编码器就很难工作。

· 这就会造成在罕见事件中发生重构误差的概率比较高。

· 如此高的重构误差,并将其标记为罕见事件预测。

· 此过程与异常检测方法类似。


实际应用


1. 数据和问题


这是来自一家造纸厂关于纸张破损的二进制标记数据。纸张破损在造纸业是个很严重的问题。一起纸张破损就会造成数千美元损失,而造纸厂每天都会有数几起破损。这导致每年数百万美元的损失和工作风险。

因为生产过程本身的性质,很难检测到纸张破损。破损概率降低5%都能给厂家带来巨大的利益。

我们的数据包含15天内收集的约18,000行数据。y列包含两类标签,1表示纸张破损。其余列是预测,正标记样本约124例(约0.6%)。


2. 编码

导入所需的库。

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from pylab import rcParams
import tensorflow as tf
from keras.models import Model, load_model
from keras.layers import Input, Dense
from keras.callbacks import ModelCheckpoint, TensorBoard
from keras import regularizers
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, precision_recall_curve
from sklearn.metrics import recall_score, classification_report, auc, roc_curve
from sklearn.metrics import precision_recall_fscore_support, f1_score
from numpy.random import seed
seed(1)
from tensorflow import set_random_seed
set_random_seed(2)
SEED = 123 #used to help randomly select the data points
DATA_SPLIT_PCT = 0.2
rcParams['figure.figsize'] = 8, 6
LABELS = ["Normal","Break"]

注意,我们正在为可重现结果设置随机种子。

3. 数据处理

现在,读取并准备数据。

df = pd.read_csv("
data/processminer-rare-event-mts - data.csv")这个罕见事件问题的目标就是在纸张破损发生之前就及时做出预测。我们试着在破损发生前四分钟就要预测到。为了建立这个模型,把标签向上移动两行(相当于4分钟)。只要df.y=df.y.shift(-2)就行了。然而针对这个问题,需要做出如下改变:如果第n行是阳性的,

· 令行(n-2)和(n-1)等于1。这将帮助分类器学会提前最多4分钟预测。

· 删除第n行。因为分类器不需要学会在事件发生时做出预测。

为了这个复杂的变化需要用下面的UDF。

sign = lambda x: (1, -1)[x < 0]
def curve_shift(df, shift_by):
'''
This function will shift the binary labels in a dataframe.
The curve shift will be with respect to the 1s. 
For example, if shift is -2, the following process
will happen: if row n is labeled as 1, then
- Make row (n+shift_by):(n+shift_by-1) = 1.
- Remove row n.
i.e. the labels will be shifted up to 2 rows up.
Inputs:
df A pandas dataframe with a binary labeled column. 
This labeled column should be named as 'y'.
shift_by An integer denoting the number of rows to shift.
Output
df A dataframe with the binary labels shifted by shift.
'''
vector = df['y'].copy()
for s in range(abs(shift_by)):
tmp = vector.shift(sign(shift_by))
tmp = tmp.fillna(0)
vector += tmp
labelcol = 'y'
# Add vector to the df
df.insert(loc=0, column=labelcol+'tmp', value=vector)
# Remove the rows with labelcol == 1.
df = df.drop(df[df[labelcol] == 1].index)
# Drop labelcol and rename the tmp col as labelcol
df = df.drop(labelcol, axis=1)
df = df.rename(columns={labelcol+'tmp': labelcol})
# Make the labelcol binary
df.loc[df[labelcol] > 0, labelcol] = 1
return df


现在,将数据分为训练集、有效集和测试集。然后迅速使用只有0的数据子集来训练自动编码器。

df_train, df_test = train_test_split(df, test_size=DATA_SPLIT_PCT, random_state=SEED)
df_train, df_valid = train_test_split(df_train, 
test_size=DATA_SPLIT_PCT, random_state=SEED)
df_train_0 = df_train.loc[df['y'] == 0]
df_train_1 = df_train.loc[df['y'] == 1]
df_train_0_x = df_train_0.drop(['y'], axis=1)
df_train_1_x = df_train_1.drop(['y'], axis=1)


4. 标准化

自动编码器最好使用标准化数据(转换为Gaussian、均值0、方差1)。

scaler = StandardScaler().fit(df_train_0_x)
df_train_0_x_rescaled = scaler.transform(df_train_0_x)
df_valid_0_x_rescaled = scaler.transform(df_valid_0_x)
df_valid_x_rescaled = scaler.transform(df_valid.drop(['y'], axis = 1))
df_test_0_x_rescaled = scaler.transform(df_test_0_x)
df_test_x_rescaled = scaler.transform(df_test.drop(['y'], axis = 1))


由自动编码器构造的分类器

1. 初始化

首先,初始化自动编码器架构。先构建一个简单的自动编码器,稍后再探索更复杂的架构和配置。


nb_epoch = 100
batch_size = 128
input_dim = df_train_0_x_rescaled.shape[1] #num of predictor variables, 
encoding_dim = 32
hidden_dim = int(encoding_dim / 2)
learning_rate = 1e-3
input_layer = Input(shape=(input_dim, ))
encoder = Dense(encoding_dim, activation="tanh", 
activity_regularizer=regularizers.l1(learning_rate))(input_layer)
encoder = Dense(hidden_dim, activation="relu")(encoder)
decoder = Dense(hidden_dim, activation='tanh')(encoder)
decoder = Dense(input_dim, activation='relu')(decoder)
autoencoder = Model(inputs=input_layer, outputs=decoder)

2. 训练

训练模型并将其保存在文件中。保存训练过的模型会为将来的分析省很多时间。

autoencoder.compile(metrics=['accuracy'],
 loss='mean_squared_error',
 optimizer='adam')
cp = ModelCheckpoint(filepath="autoencoder_classifier.h5",
 save_best_only=True,
 verbose=0)
tb = TensorBoard(log_dir='./logs',
 histogram_freq=0,
 write_graph=True,
 write_images=True)
history=autoencoder.fit(df_train_0_x_rescaled,df_train_0_x_rescaled,
 epochs=nb_epoch,
 batch_size=batch_size,
 shuffle=True,
 validation_data=(df_valid_0_x_rescaled,
df_valid_0_x_rescaled),
 verbose=1,
 callbacks=[cp, tb]).history

3. 分类

接下来将展示如何利用自动编码器重构误差来构造罕见事件分类器。

如前所述,如果重构误差较大,将其归类为纸张破损。需要确定这个阈值。

使用验证集来确定阈值。

valid_x_predictions = autoencoder.predict(df_valid_x_rescaled)
mse = np.mean(np.power(df_valid_x_rescaled - valid_x_predictions, 2), axis=1)
error_df = pd.DataFrame({'Reconstruction_error': mse, 'True_class': df_valid['y']})
precision_rt, recall_rt, threshold_rt = precision_recall_curve(error_df.True_class, 
error_df.Reconstruction_error)
plt.plot(threshold_rt, precision_rt[1:], label="Precision",linewidth=5)
plt.plot(threshold_rt, recall_rt[1:], label="Recall",linewidth=5)
plt.title('Precision and recall for different threshold values')
plt.xlabel('Threshold')
plt.ylabel('Precision/Recall')
plt.legend()
plt.show()

现在,对测试数据进行分类。

不要根据测试数据来估计分类阈值,这会导致过度拟合。

test_x_predictions = autoencoder.predict(df_test_x_rescaled)
mse = np.mean(np.power(df_test_x_rescaled - test_x_predictions, 2), axis=1)
error_df_test = pd.DataFrame({'Reconstruction_error': mse, 'True_class': df_test['y']})error_df_test = error_df_test.reset_index()
threshold_fixed = 0.85
groups = error_df_test.groupby('True_class')
fig, ax = plt.subplots()
for name, group in groups:
 ax.plot(group.index, group.Reconstruction_error, marker='o', ms=3.5, linestyle='',
 label= "Break" if name == 1 else "Normal")
ax.hlines(threshold_fixed, ax.get_xlim()[0], ax.get_xlim()[1], colors="r", zorder=100, label='Threshold')
ax.legend()
plt.title("Reconstruction error for different classes")
plt.ylabel("Reconstruction error")
plt.xlabel("Data point index")
plt.show();

图4中,阈值线上方的橙色和蓝色圆点分别表示真阳性和假阳性。可以看到上面有很多假阳性的点。为了看得更清楚,可以看一个混淆矩阵。

pred_y = [1 if e > threshold_fixed else 0 for e in error_df.Reconstruction_error.values]
conf_matrix = confusion_matrix(error_df.True_class, pred_y)
plt.figure(figsize=(12, 12))
sns.heatmap(conf_matrix, xticklabels=LABELS, yticklabels=LABELS, annot=True, fmt="d");
plt.title("Confusion matrix")
plt.ylabel('True class')
plt.xlabel('Predicted class')
plt.show()

在32次的破损中,我们预测到了9次。注意,其中包括提前两或四分钟的预测。这一概率约为28%,对造纸业来说是一个不错的召回率。假阳性率约为6.3%。这对造纸厂来说不是最好的结果,但也不坏。

该模型还可以进一步改进,降低假阳性率以提高召回率。观察如下AUC值后探讨改进方法。

ROC曲线和AUC(Area Under Curve)

false_pos_rate, true_pos_rate, thresholds = roc_curve(error_df.True_class, error_df.Reconstruction_error)roc_auc = auc(false_pos_rate, true_pos_rate,)
plt.plot(false_pos_rate, true_pos_rate, linewidth=5, label='AUC = %0.3f'% roc_auc)plt.plot([0,1],[0,1], linewidth=5)
plt.xlim([-0.01, 1])
plt.ylim([0, 1.01])
plt.legend(loc='lower right')
plt.title('Receiver operating characteristic curve (ROC)')
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()

值得注意的是,这是一个(多变量的)时间序列数据。我们并未考虑数据中的时间信息/模式。

留言 点赞 关注

我们一起分享AI学习与发展的干货

欢迎关注全平台AI垂类自媒体 “读芯术”

相关推荐

机器学习分类模型评估(三)-F值(F-Measure)、AUC、P-R曲线

概述上二篇文章分别讲述了准确率(accuracy)、精确率(Precision)、查准类、召回率(Recall)、查全率、ROC曲线,本文讲述机器学习分类模型评估中的F值(F-Measure)、AUC...

SPSS ROC曲线诊断临界值确定

ROC曲线是在临床医学和流行病学研究中一种常用的在诊断试验、预测模型中用于决定最佳临界点的方法。ROC曲线用真阳性率和假阳性率作图得出曲线,其横轴表示假阳性率(1-特异度),纵轴表示真阳性率(灵敏度)...

分类器模型检测--ROC曲线和AUC值

在监督学习建模中有一个重要的模块是模块的检测,就是怎样判断一个模型的好坏?那么常用的的检测的指标有P值、R值、F值、ROC曲线、AUC值等,今天来学习他们都是怎么来的,有什么用处。这里为二分类问题,即...

【Python机器学习系列】建立梯度提升模型预测心脏疾病

这是Python机器学习系列原创文章,我的第204篇原创文章。一、引言对于表格数据,一套完整的机器学习建模流程如下:针对不同的数据集,有些步骤不适用即不需要做,其中橘红色框为必要步骤,由于数据质量较高...

如何Keras自动编码器给极端罕见事件分类

全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...

机器学习分类问题:9个常用的评估指标总结

对机器学习的评估度量是机器学习核心部分,本文总结分类问题常用的metrics分类问题评估指标在这里,将讨论可用于评估分类问题预测的各种性能指标1ConfusionMatrix这是衡量分类问题性能的...

基于R语言的ROC曲线绘制及最佳阈值点(Cutoff)选择

ROC曲线在介绍ROC曲线之前,我们首先需要介绍混淆矩阵(ConfusionMatrix)。在统计分类模型的评估过程中分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来的表格...

R数据分析:多分类问题预测模型的ROC做法及解释

有同学做了个多分类的预测模型,结局有三个类别,做的模型包括多分类逻辑回归、随机森林和决策树,多分类逻辑回归是用ROC曲线并报告AUC作为模型评估的,后面两种模型报告了混淆矩阵,审稿人就提出要统一模型评...

SPSS实战:多个指标ROC曲线方向不一致的解决办法汇总(收藏)

在诊断实验和预测模型的临床效能评价中,我们常常用到ROC曲线分析。在SPSS中绘制ROC曲线操作比较简单,但如果将多个指标的ROC曲线绘制在同一个图中,有时候会碰到有些指标的ROC曲线在对角线上面,一...

小果教你快速分析ROC生存曲线图

尔云间一个专门做科研的团队原创小果生信果小伙伴们,大家好呀,很高兴和大家见面,前段时间应小伙伴出的解读ROC曲线图,小伙伴反应很是积极,这不最近小伙伴对于不同年份的ROC曲线图的分析呼声很高,...

生信文章中高频出现、模型评估必备分析——ROC曲线图,怎么看?

尔云间一个专门做科研的团队关注我们做了生信分析,拿到一堆数据,看不懂图怎么办?火山图、热图、散点图、箱线图、瀑布图···这么多类型的图都咋看?风险模型预后评估图、GO-KEGG富集分析图、GSEA...

如何看懂文献里那些图——ROC曲线图

ROC曲线的基本思想是把敏感度和特异性看作一个连续变化的过程,用一条曲线描述诊断系统的性能,其制作原理是在连续变量中不同界值点处计算相对应的灵敏度和特异度,然后以敏感度为纵坐标、1-特异性为横坐标绘制...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

准确性检验 (ROC曲线)的SPSS操作教程及结果解读

作者/风仕在上一期,我们已经讲完了诊断试验的基础知识,这期开始讲准确性检验(ROC曲线),我们主要从准确性检验(ROC曲线)的介绍、基本概念、绘制原理、统计量、使用条件及案例的SPSS操作演示这几...

SPSS:ROC 曲线为什么反了?

【作者介绍】李志辉,长期从事各类统计软件应用研究,主编或参编SPSS、MINITAB、STATISTICA多个统计软件教材共8本。代表作:电子工业出版社《SPSS常用统计分析教程(SPSS22.0中...