百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

拥抱Kubernetes,再见了Spring Cloud

bigegpt 2025-07-17 17:22 3 浏览

相信很多开发者在熟悉微服务工作后,才发现: 以为用 Spring Cloud 已经成功打造了微服务架构帝国,殊不知引入了 k8s 后,却和 Cloud Native 的生态发展脱轨。

从 2013 年的 Spring Boot

2012年10月,Mike Youngstrom在Spring jira中创建了一个功能需求,要求在Spring框架中支持无容器Web应用程序体系结构。他建议通过main方法引导的Spring容器内配置Web容器服务。这一需求促成了2013年初开始的Spring Boot项目的开发。2014年4月,Spring Boot 1.0.0发布。从那以后,一些Spring Boot小版本开始出现。

  • Spring Boot 1.1(2014年6月):改进的模板支持,gemfire支持,elasticsearch和apache solr的自动配置
  • Spring boot 1.2(2015年3月):升级到servlet 3.1/tomcat 8/jetty 9和spring 4.1,支持banner/jms /SpringBoot Application注释
  • Spring boot 1.3(2016年12月):升级到spring4.2,新的spring-boot-devtools,缓存技术的自动配置(ehcache,hazelcast,redis,guava和infinispan)以及完全可执行的jar支持
  • Spring boot 1.4(2017年1月):升级到spring 4.3,couchbase/neo4j支持,启动失败分析和RestTemplateBuilder
  • Spring boot 1.5(2017年2月):支持kafka /ldap,第三方库升级,放弃对CRaSH支持和执行器日志终端用以动态修改应用程序日志级别
  • Spring boot的简便性使java开发人员能够快速大规模地应用于项目。 Spring boot可以说是Java中开发基于RESTful微服务Web应用的最快方法之一。它也非常适合docker容器部署和快速原型设计
  • Spring Boot 2.0.0,于2018年3月1日发布,新版本特点有: 基于 Java 8,支持 Java 9;支持 Quartz 调度程序;支持嵌入式 Netty,Tomcat, Undertow 和 Jetty 均已支持 HTTP/2;执行器架构重构,支持 Spring MVC, WebFlux 和 Jersey;对响应式编程提供最大支持;引入对 Kotlin 1.2.x 的支持,并提供了一个 runApplication 函数,用Kotlin 通用的方式启动 Spring Boot 应用程序。

一直到 Spring Cloud,第一批选型它的大公司很早就构建出了完整微服务生态,很多解決方案开放源码,很多坑点已被踩完相当稳定。 对于很多想要使用微服务架构的中小公司,绝对是最佳进场时机,直接使用 Spring Cloud 全家桶,绝对是稳定而正确的选择。

但当引入了 k8s 后,仿佛就变天了。

k8s 和 Spring Cloud 的激烈冲突

Java 生态的 Spring Cloud 可谓是迄今最完整的微服务框架,基本满足所有微服务架构需求,网上的教程也不胜枚举。 但也因为 Spring Cloud 生态过于完整,如今 k8s 大行其道,当我们把原来基于 Spring Cloud 开发的服务放到 k8s 后, 一些机制自成一格,不受 k8s 生态的工具和机制管控。

因為从扩展部署、运维角度出发的 k8s,在最原始容器、应用程式部署及网络层管理的基础上,已逐步实现並贴近应用层的需要,一些微服务架构下的基础需求(如:Service Discovery、API Gateway 等)开始直接或间接被纳入 k8s 生态。 导致双方有很多组件功能重复,且只能择一而终, 一旦你选了 Spring Cloud 的解決方案,就得放弃 k8s 那边的机制。

Spring Cloud 官方提供的解决方案

  • 为解决该问题,官方在 Github 上提供了开源方案,说明如何以 Spring Cloud 整合 Kubernetes 生态下的元件,主要讨论从原本组件架构过渡并一直到 Kubernetes 原生环境后的处理方法 https://github.com/spring-cloud/spring-cloud-kubernetes

该解決方案重点如下:

服务发现 (Service Discovery)

Spring Cloud 的经典解决方案:Netflix Eureka、Alibaba Nacos、Hashicorp。主要原理都是在服务部署时,去注册自己的服务,让其他服务可检索到自己。

spring.cloud.service-registry.auto-registration.enabled
@EnableDiscoveryClient(autoRegister=false)

但在 k8s ,服務的注册和查询由 Service 元件负责,其连线名称,是利用內部 DNS 实现。这代表我們要將服务发现功能,接上 k8s 的 Service 机制。 为达成目的,方案中提供了 DiscoveryClient 组件,让基于 Spring Cloud 所开发的程序可方便查询其他服务。 使用了 Kubernetes 原生的服务发现,才能被 Istio 追踪,未來才能纳入 Service Mesh 的管控。

配置管理 (Configuration Management)

Spring Cloud 的解决方案:spring-cloud-config。但在 Kubernetes 上,有 ConfigMap 和 Secret 可使用,而且通常还会搭配 Vault 管理敏感配置。

而该方案提供了 ConfigMapPropertySource 和 SecretsPropertySource,來存取 Kubernetes 上的 ConfigMap 和 Secret。

负载均衡和熔断器 (Load Balancing & Circuit Breaker)

Spring Cloud原有方案:Netflix Ribbon 和 Hystrix,但在 k8s 有 Service 实现负载均衡,以及 Istio 可实现熔断器,开发者只需专注 crud。 由于负载均衡和熔断器會依赖服务发现机制,因此 Ribbon 和 Hytrix 原先的功能在 k8s 原生环境下失效。 该解決方案內虽然有提到一些关于 Ribbon 整合 Kubernetes 原生环境的实现,但相关链接已消失,应该是放弃了。 所以推荐避免使用客户端的负载均衡和熔断器。

Spring Cloud V.S k8s 重叠方案

我们当然也能完全不理會 k8s 原生组件,完全采用 Spring Boot 和 Spring Cloud 的解決方案,只把 k8s 当做部署应用的工具和平台。但显然在未來,Service Mesh 及其通用的 Cloud Native 技术发展,就会和Spring Cloud脱轨,无法再和我们的应用深度整合。

相比于 Spring Cloud 生态都只能使用 Java , k8s 生态的发展和设计更为通用且广泛,一些 Spring Cloud 內的元件功能,在 Kubernetes 除了包含支援以外,甚至有更多的整合和考量及延伸的功能。 由于 CNCF 的推波助澜及更多国际大厂投入,新工具、运维方法、整合能力层出不穷。因此,在选型微服务架构时,k8s 的各种原生解決方案,都需要被放入评估考量中。 目前网络上很多 Spring Boot 和 Spring Cloud 的很多已经过时,而且都没整合 k8s,与当下主流的基础设施环境有落差,学习时都要自己斟酌考量。

相关推荐

方差分析简介(方差分析通俗理解)

介绍方差分析(ANOVA,AnalysisofVariance)是一种广泛使用的统计方法,用于比较两个或多个组之间的均值。单因素方差分析是方差分析的一种变体,旨在检测三个或更多分类组的均值是否存在...

正如404页面所预示,猴子正成为断网元凶--吧嗒吧嗒真好吃

吧嗒吧嗒,绘图:MakiNaro你可以通过加热、冰冻、水淹、模塑、甚至压溃压力来使网络光缆硬化。但用猴子显然是不行的。光缆那新挤压成型的塑料外皮太尼玛诱人了,无法阻挡一场试吃盛宴的举行。印度政府正...

Python数据可视化:箱线图多种库画法

概念箱线图通过数据的四分位数来展示数据的分布情况。例如:数据的中心位置,数据间的离散程度,是否有异常值等。把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)...

多组独立(完全随机设计)样本秩和检验的SPSS操作教程及结果解读

作者/风仕在上一期,我们已经讲完了两组独立样本秩和检验的SPSS操作教程及结果解读,这期开始讲多组独立样本秩和检验,我们主要从多组独立样本秩和检验介绍、两组独立样本秩和检验使用条件及案例的SPSS操作...

方差分析 in R语言 and Excel(方差分析r语言例题)

今天来写一篇实际中比较实用的分析方法,方差分析。通过方差分析,我们可以确定组别之间的差异是否超出了由于随机因素引起的差异范围。方差分析分为单因素方差分析和多因素方差分析,这一篇先介绍一下单因素方差分析...

可视化:前端数据可视化插件大盘点 图表/图谱/地图/关系图

前端数据可视化插件大盘点图表/图谱/地图/关系图全有在大数据时代,很多时候我们需要在网页中显示数据统计报表,从而能很直观地了解数据的走向,开发人员很多时候需要使用图表来表现一些数据。随着Web技术的...

matplotlib 必知的 15 个图(matplotlib各种图)

施工专题,我已完成20篇,施工系列几乎覆盖Python完整技术栈,目标只总结实践中最实用的东西,直击问题本质,快速帮助读者们入门和进阶:1我的施工计划2数字专题3字符串专题4列表专题5流程控制专题6编...

R ggplot2常用图表绘制指南(ggplot2绘制折线图)

ggplot2是R语言中强大的数据可视化包,基于“图形语法”(GrammarofGraphics),通过分层方式构建图表。以下是常用图表命令的详细指南,涵盖基本语法、常见图表类型及示例,适合...

Python数据可视化:从Pandas基础到Seaborn高级应用

数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。Pandas内置绘图功能Pandas基于Matplotlib提供了简洁的绘...

Python 数据可视化常用命令备忘录

本文提供了一个全面的Python数据可视化备忘单,适用于探索性数据分析(EDA)。该备忘单涵盖了单变量分析、双变量分析、多变量分析、时间序列分析、文本数据分析、可视化定制以及保存与显示等内容。所...

统计图的种类(统计图的种类及特点图片)

统计图是利用几何图形或具体事物的形象和地图等形式来表现社会经济现象数量特征和数量关系的图形。以下是几种常见的统计图类型及其适用场景:1.条形图(BarChart)条形图是用矩形条的高度或长度来表示...

实测,大模型谁更懂数据可视化?(数据可视化和可视化分析的主要模型)

大家好,我是Ai学习的老章看论文时,经常看到漂亮的图表,很多不知道是用什么工具绘制的,或者很想复刻类似图表。实测,大模型LaTeX公式识别,出乎预料前文,我用Kimi、Qwen-3-235B...

通过AI提示词让Deepseek快速生成各种类型的图表制作

在数据分析和可视化领域,图表是传达信息的重要工具。然而,传统图表制作往往需要专业的软件和一定的技术知识。本文将介绍如何通过AI提示词,利用Deepseek快速生成各种类型的图表,包括柱状图、折线图、饼...

数据可视化:解析箱线图(box plot)

箱线图/盒须图(boxplot)是数据分布的图形表示,由五个摘要组成:最小值、第一四分位数(25th百分位数)、中位数、第三四分位数(75th百分位数)和最大值。箱子代表四分位距(IQR)。IQR是...

[seaborn] seaborn学习笔记1-箱形图Boxplot

1箱形图Boxplot(代码下载)Boxplot可能是最常见的图形类型之一。它能够很好表示数据中的分布规律。箱型图方框的末尾显示了上下四分位数。极线显示最高和最低值,不包括异常值。seaborn中...