百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

YOLOv4: 虽迟但到,大型调优现场,43mAP/83FPS | 论文速递

bigegpt 2024-08-02 10:48 8 浏览

YOLOv4在速度和准确率上都十分优异,作者使用了大量的trick,论文也写得很扎实,在工程还是学术上都有十分重要的意义,既可以学习如何调参,也可以了解目标检测的trick。 ?


来源:晓飞的算法工程笔记 公众号

论文: YOLOv4: Optimal Speed and Accuracy of Object Detection

  • 论文地址:https://arxiv.org/abs/2004.10934
  • 论文代码:https://github.com/AlexeyAB/darknet

Introduction


? 论文提出YOLOv4,从图1的结果来看,相对于YOLOv3在准确率上提升了近10个点,然而速度并几乎没有下降,论文主要贡献如下:

  • 提出速度更快、精度更好的检测模型,仅需要单张1080Ti或2080Ti即可完成训练。
  • 验证了目前SOTA的Bag-ofFreebies(不增加推理成本的trick)和Bag-of-Specials(增加推理成本的trick)的有效性。
  • 修改了SOTA方法,让其更高效且更合适地在单卡进行训练,包括CBN、PAN、SAM等。

Methodology


Selection of architecture

? 对检测模型来说,分类最优的主干网络不一定是最合适的,适用于目标检测的主干网络需满足以下要求:

  • 高输入分辨率,提高小物体的检测准确率。
  • 更多的层,提高感受域来适应输入的增加。
  • 更多的参数,提高检测单图多尺寸目标的能力。

? 理论来讲,应该选择感受域更大且参数了更大的模型作为主干网络,表1对比了三种SOTA主干网络的,可以看到CSPDarknet53的感受域、参数量以及速度都是最好的,故选其为主干网络。

? 另外,使用不同大小的感受域有以下好处:

  • 匹配物体大小,可以观察完整的物体。
  • 匹配网络大小,可以观察物体的上下文信息。
  • 超过网络的大小,增加点与最终激活之间的连接数。

? 为此,YOLOv4加入了SPP block,能够显著地改善感受域大小,而且速度几乎没有什么下降。

? 另外,使用PANet替换FPN来进行多通道特征的融合。 ? 最终,YOLOv4选择CSPDarknet53作为主干网络,配合SPP模块,PANet通道融合以及YOLOv3的anchor based head。

Selection of BoF and BoS

? 目前比较有效的目标检测提升的trick:

  • 激活函数: ReLU, leaky-ReLU, parametric-ReLU, ReLU6, SELU, Swish, or Mish。
  • bbox回归损失: MSE, IoU, GIoU, CIoU, DIoU
  • 数据增强: CutOut, MixUp, CutMix
  • 正则化方法: DropOut, DropPath, Spatial DropOut, or DropBlock
  • 归一化方法: Batch Normalization(BN), Cross-GPU Batch Normalization(CGBN or SyncBN), Filter Response Normalization (FRN), or Cross-Iteration Batch Normalization(CBN)

? 由于PReLU和SELU难以训练,并且ReLU6是专门为量化网络设计的,从激活函数中去除这几种。而在正则化方法中,DropBlock的效果是最优的。对于归一化方法的选择,由于需要单卡训练,因此不考虑SyncBN。

Additional improvements

? 为了让模型能更好地在单卡进行训练,做了以下的改进:

  • 提出新的数据增强方法Mosaic和Self-Adversarial Training (SAT)。
  • 使用遗传算法选择最优的超参数。
  • 修改目前的方法来让训练和检测更有效,包括改进的SAM,改进的PAN以及 Cross mini-Batch Normalization (CmBN)

? Mosaic是新的数据增强方法,同时融合4张训练图片,CutMix仅融合2张图片,使得目标的检测范围超出其正常的上下文,另外BN每次统计4张图片,这能显著地减少对大mini-batch的需要。 ? Self-Adversarial Training(SAT)也提供新的数据增强手段,分为两个前向反向阶段。在第一阶段,先对图片进行前向计算,然后通过反向传播修改图片的像素,注意这里不修改网络的权重,通过这种方式,网络进行了一次对抗式训练,制造出没有目标的假象。在第二阶段,对修改后的图片进行正常的训练。

? CmBN是改进版的CBN,仅统计single-batch中的mini-batch,如图4所示,假设t-3~t为single-batch中的mini-batch,若干single-batch中包含单个mini-batch,则CmBN与BN一样。

? 将SAM从spitial-wise attention修改为point-wise attention,即输入和输出的大小一致。

? 将PAN的shortcut连接方法,从相加改为concate。

YOLOv4

? YOLOv4包含:

  • Backbone:CSPDarknet53
  • Neck:SPP,PAN
  • Head:YOLOv3

? YOLO v4使用:

  • 主干网络的BoF(Bag of Freebies):CutMix和Mosaic数据增强, DropBlock正则化, 标签平滑(Class label smoothing)
  • 主干网络的BoS(Bag of Specials):Mish激活, Cross-stage partial connections (CSPNet), Multiinput weighted residual connections(MiWRC)
  • 检测端的BoF(Bag of Freebies):CIoU-loss, CmBN, DropBlock正则化, Mosaic数据增强, Self-Adversarial Training, 去除边框敏感性(Eliminate grid sensitivity,见实验部分的解释), 多anchor回归(之前只选最大的), 余弦退火学习率调整(Cosine annealing scheduler), 使用遗传算法最优化超参数, 随机输入大小
  • 检测端的BoS(Bag of Specials):Mish激活, SPP-block, SAM-block, PAN通道融合, DIoU-NMS

Experiments


Influence of different features on Classifier training

? CutMix、Mosaic数据增强和标签平衡(Class label smoothing)比较有效。

Influence of different features on Detector training

? 表4对比的BoF如下:

  • S:去除边框敏感性,,之前的中心点回归与anchor的边相关,当需要趋近或时,需要很大的,为此对sigmoid添加一个大于1的因子来减少这个影响
  • M:Mosaic数据增强
  • IT:IoU阈值,使用大于IoU阈值的anchor进行训练,之前好像只选最大的
  • GA:使用遗传算法进行最优超参选择
  • LS:标签平滑
  • CNB:论文提出的CmBN
  • CA:使用余弦退火(Cosine annealing scheduler)进行学习率下降
  • DM:动态mini-batch大小,小分辨率时增加mini-batch
  • OA:使用最优的anchors
  • GIoU, CIoU, DIoU, MSE:bbox损失函数

? 论文也对比了检测端的BoS,从结果来看,SPP、PAN和SAM同时使用时效果最好。

Influence of different backbones and pretrained weightings on Detector training

? 论文研究了不同主干网络对检测准确率的影响,可以看到CSPDarknet53能更好地适应各种改进。

Influence of different mini-batch size on Detector training

? 论文对比了不同的mini-batch大小下的检测准确率,在加入BoF和BoS训练策略后,mini-batch的改变几乎对准确率没有影响。

Results

? 表8、9和10分别为Maxwell GPU、Pascal GPU和Volta GPU上的实验结果,从大量的实验对比来看,YOLOv4在速度和准确率上都十分耐看。

CONCLUSION


? YOLOv4在速度和准确率上都十分优异,作者使用了大量的trick,论文也写得很扎实,在工程还是学术上都有十分重要的意义,既可以学习如何调参,也可以了解目标检测的trick。

? ? ?

如果本文对你有帮助,麻烦点个赞或在看呗~ 更多内容请关注 微信公众号【晓飞的算法工程笔记】

相关推荐

当Frida来“敲”门(frida是什么)

0x1渗透测试瓶颈目前,碰到越来越多的大客户都会将核心资产业务集中在统一的APP上,或者对自己比较重要的APP,如自己的主业务,办公APP进行加壳,流量加密,投入了很多精力在移动端的防护上。而现在挖...

服务端性能测试实战3-性能测试脚本开发

前言在前面的两篇文章中,我们分别介绍了性能测试的理论知识以及性能测试计划制定,本篇文章将重点介绍性能测试脚本开发。脚本开发将分为两个阶段:阶段一:了解各个接口的入参、出参,使用Python代码模拟前端...

Springboot整合Apache Ftpserver拓展功能及业务讲解(三)

今日分享每天分享技术实战干货,技术在于积累和收藏,希望可以帮助到您,同时也希望获得您的支持和关注。架构开源地址:https://gitee.com/msxyspringboot整合Ftpserver参...

Linux和Windows下:Python Crypto模块安装方式区别

一、Linux环境下:fromCrypto.SignatureimportPKCS1_v1_5如果导包报错:ImportError:Nomodulenamed'Crypt...

Python 3 加密简介(python des加密解密)

Python3的标准库中是没多少用来解决加密的,不过却有用于处理哈希的库。在这里我们会对其进行一个简单的介绍,但重点会放在两个第三方的软件包:PyCrypto和cryptography上,我...

怎样从零开始编译一个魔兽世界开源服务端Windows

第二章:编译和安装我是艾西,上期我们讲述到编译一个魔兽世界开源服务端环境准备,那么今天跟大家聊聊怎么编译和安装我们直接进入正题(上一章没有看到的小伙伴可以点我主页查看)编译服务端:在D盘新建一个文件夹...

附1-Conda部署安装及基本使用(conda安装教程)

Windows环境安装安装介质下载下载地址:https://www.anaconda.com/products/individual安装Anaconda安装时,选择自定义安装,选择自定义安装路径:配置...

如何配置全世界最小的 MySQL 服务器

配置全世界最小的MySQL服务器——如何在一块IntelEdison为控制板上安装一个MySQL服务器。介绍在我最近的一篇博文中,物联网,消息以及MySQL,我展示了如果Partic...

如何使用Github Action来自动化编译PolarDB-PG数据库

随着PolarDB在国产数据库领域荣膺桂冠并持续获得广泛认可,越来越多的学生和技术爱好者开始关注并涉足这款由阿里巴巴集团倾力打造且性能卓越的关系型云原生数据库。有很多同学想要上手尝试,却卡在了编译数据...

面向NDK开发者的Android 7.0变更(ndk android.mk)

订阅Google官方微信公众号:谷歌开发者。与谷歌一起创造未来!受Android平台其他改进的影响,为了方便加载本机代码,AndroidM和N中的动态链接器对编写整洁且跨平台兼容的本机...

信创改造--人大金仓(Kingbase)数据库安装、备份恢复的问题纪要

问题一:在安装KingbaseES时,安装用户对于安装路径需有“读”、“写”、“执行”的权限。在Linux系统中,需要以非root用户执行安装程序,且该用户要有标准的home目录,您可...

OpenSSH 安全漏洞,修补操作一手掌握

1.漏洞概述近日,国家信息安全漏洞库(CNNVD)收到关于OpenSSH安全漏洞(CNNVD-202407-017、CVE-2024-6387)情况的报送。攻击者可以利用该漏洞在无需认证的情况下,通...

Linux:lsof命令详解(linux lsof命令详解)

介绍欢迎来到这篇博客。在这篇博客中,我们将学习Unix/Linux系统上的lsof命令行工具。命令行工具是您使用CLI(命令行界面)而不是GUI(图形用户界面)运行的程序或工具。lsoflsof代表&...

幻隐说固态第一期:固态硬盘接口类别

前排声明所有信息来源于网络收集,如有错误请评论区指出更正。废话不多说,目前固态硬盘接口按速度由慢到快分有这几类:SATA、mSATA、SATAExpress、PCI-E、m.2、u.2。下面我们来...

新品轰炸 影驰SSD多款产品登Computex

分享泡泡网SSD固态硬盘频道6月6日台北电脑展作为全球第二、亚洲最大的3C/IT产业链专业展,吸引了众多IT厂商和全球各地媒体的热烈关注,全球存储新势力—影驰,也积极参与其中,为广大玩家朋友带来了...