百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

想把小电影女主角换成杨幂吗?一百行代码搞定AI换脸技术!

bigegpt 2024-08-28 12:08 1 浏览

在座的各位,是不是已经试过人脸解锁手机了?是不是尝试过刷脸购物了?玩过人脸识别的动物表情小游戏了没?如果都有的话,那么想必咱们可以达成一个共识:AI在人脸这件事上已经越来越精通了。

如果说识别只是AI对人脸做出的第一件事,那么第二件事是什么呢?从种种迹象来看,答案只有一个,那就是给人换脸。

当然,AI不会真的去给人整容(至少目前不会),它能做的是在视频里给人换脸。比如最近刷屏级的小视频可能大家都已经看过了。

视频中的女主角(确切的说是女主角的脸)是《神奇女侠》的扮演者盖尔·加朵。但这当然不是其本人出演了什么令人羞耻的小电影。而是有人用深度学习技术把盖尔·加朵的脸替换到了原片女主角的身体上。乍看之下基本没什么破绽,但其实两个人是不怎么像的。

(左为原片角色,二人差距其实不小)

接下来我将介绍如何写一个简短(200行)的 Python 脚本,来自动地将一幅图片的脸替换为另一幅图片的脸。

这个过程分四步:

检测脸部标记。

旋转、缩放、平移和第二张图片,以配合第一步。

调整第二张图片的色彩平衡,以适配第一张图片。

把第二张图像的特性混合在第一张图像中。

1.使用 dlib 提取面部标记

该脚本使用dlib的 Python 绑定来提取面部标记(landmark landmark主要是把人脸的那些关键点定位好,就可以大概确定人脸的角度偏移等信息,以便接下来的人脸对准之类的操作。):

dlib配置:

1. 官网下载dlib包并解压:

tar xvfj dlib**.tar.bz2 

2. 进入dlib root 路径,并执行setup.py.

python setup.py install 

这个过程要是遇到要安装包就根据提示一步步安装吧~

3. 添加dlib的环境变量:

sudo gedit .bashrc 
export PYTHONPATH=/path/to/dlib/python_examples:$PYTHONPATH 
source .bashrc 

4. 测试安装是否成功:

python 
import dlib 

Dlib 实现了 Vahid Kazemi 和 Josephine Sullivan 的《使用回归树一秒脸对准》论文中的算法。算法本身非常复杂,但dlib接口使用起来非常简单:

PREDICTOR_PATH = "/home/matt/dlib-18.16/shape_predictor_68_face_landmarks.dat" 
detector = dlib.get_frontal_face_detector() 
predictor = dlib.shape_predictor(PREDICTOR_PATH) 
def get_landmarks(im): 
 rects = detector(im, 1) 
 if len(rects) > 1: 
 raise TooManyFaces 
 if len(rects) == 0: 
 raise NoFaces 
 return numpy.matrix([[p.x, p.y] for p in predictor(im, rects[0]).parts()]) 

get_landmarks()函数将一个图像转化成numpy数组,并返回一个68×2元素矩阵,输入图像的每个特征点对应每行的一个x,y坐标。

特征提取器(predictor)需要一个粗糙的边界框作为算法输入,由一个传统的能返回一个矩形列表的人脸检测器(detector)提供,其每个矩形列表在图像中对应一个脸。

2.用 Procrustes 分析调整脸部

现在我们已经有了两个标记矩阵,每行有一组坐标对应一个特定的面部特征(如第30行的坐标对应于鼻头)。我们现在要解决如何旋转、翻译和缩放第一个向量,使它们尽可能适配第二个向量的点。一个想法是可以用相同的变换在第一个图像上覆盖第二个图像。

将这个问题数学化,寻找T,s 和 R,使得下面这个表达式:

结果最小,其中R是个2×2正交矩阵,s是标量,T是二维向量,pi和qi是上面标记矩阵的行。

事实证明,这类问题可以用“常规Procrustes分析法”解决:

def transformation_from_points(points1, points2): 
 points1 = points1.astype(numpy.float64) 
 points2 = points2.astype(numpy.float64) 
 c1 = numpy.mean(points1, axis=0) 
 c2 = numpy.mean(points2, axis=0) 
 points1 -= c1 
 points2 -= c2 
 s1 = numpy.std(points1) 
 s2 = numpy.std(points2) 
 points1 /= s1 
 points2 /= s2 
 U, S, Vt = numpy.linalg.svd(points1.T * points2) 
 R = (U * Vt).T 
 return numpy.vstack([numpy.hstack(((s2 / s1) * R, 
 c2.T - (s2 / s1) * R * c1.T)), 
 numpy.matrix([0., 0., 1.])]) 

代码实现了这几步:

1.将输入矩阵转换为浮点数。这是后续操作的基础。

2.每一个点集减去它的矩心。一旦为点集找到了一个最佳的缩放和旋转方法,这两个矩心 c1 和 c2 就可以用来找到完整的解决方案。

3.同样,每一个点集除以它的标准偏差。这会消除组件缩放偏差的问题。

4.使用奇异值分解计算旋转部分。可以在维基百科上看到关于解决正交 Procrustes 问题的细节。

5.利用仿射变换矩阵返回完整的转化。

其结果可以插入 OpenCV 的 cv2.warpAffine 函数,将图像二映射到图像一:

def warp_im(im, M, dshape): 
 output_im = numpy.zeros(dshape, dtype=im.dtype) 
 cv2.warpAffine(im, 
 M[:2], 
 (dshape[1], dshape[0]), 
 dst=output_im, 
 borderMode=cv2.BORDER_TRANSPARENT, 
 flags=cv2.WARP_INVERSE_MAP) 
 return output_im 

对齐结果如下:

3.校正第二张图像的颜色

如果我们试图直接覆盖面部特征,很快会看到这个问题:

这个问题是两幅图像之间不同的肤色和光线造成了覆盖区域的边缘不连续。我们试着修正:

COLOUR_CORRECT_BLUR_FRAC = 0.6 
LEFT_EYE_POINTS = list(range(42, 48)) 
RIGHT_EYE_POINTS = list(range(36, 42)) 
def correct_colours(im1, im2, landmarks1): 
 blur_amount = COLOUR_CORRECT_BLUR_FRAC * numpy.linalg.norm( 
 numpy.mean(landmarks1[LEFT_EYE_POINTS], axis=0) - 
 numpy.mean(landmarks1[RIGHT_EYE_POINTS], axis=0)) 
 blur_amount = int(blur_amount) 
 if blur_amount % 2 == 0: 
 blur_amount += 1 
 im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0) 
 im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0) 
 # Avoid divide-by-zero errors. 
 im2_blur += 128 * (im2_blur <= 1.0) 
 return (im2.astype(numpy.float64) * im1_blur.astype(numpy.float64) / 
 im2_blur.astype(numpy.float64)) 

结果如下:

此函数试图改变 im2 的颜色来适配 im1。它通过用 im2 除以 im2 的高斯模糊值,然后乘以im1的高斯模糊值。这里的想法是用RGB缩放校色,但并不是用所有图像的整体常数比例因子,每个像素都有自己的局部比例因子。

用这种方法两图像之间光线的差异只能在某种程度上被修正。例如,如果图像1是从一侧照亮,但图像2是被均匀照亮的,色彩校正后图像2也会出现未照亮一侧暗一些的问题。

也就是说,这是一个相当简陋的办法,而且解决问题的关键是一个适当的高斯核函数大小。如果太小,第一个图像的面部特征将显示在第二个图像中。过大,内核之外区域像素被覆盖,并发生变色。这里的内核用了一个0.6 *的瞳孔距离。

4.把第二张图像的特征混合在第一张图像中

用一个遮罩来选择图像2和图像1的哪些部分应该是最终显示的图像:

值为1(显示为白色)的地方为图像2应该显示出的区域,值为0(显示为黑色)的地方为图像1应该显示出的区域。值在0和1之间为图像1和图像2的混合区域。

这是生成上图的代码:

LEFT_EYE_POINTS = list(range(42, 48)) 
RIGHT_EYE_POINTS = list(range(36, 42)) 
LEFT_BROW_POINTS = list(range(22, 27)) 
RIGHT_BROW_POINTS = list(range(17, 22)) 
NOSE_POINTS = list(range(27, 35)) 
MOUTH_POINTS = list(range(48, 61)) 
OVERLAY_POINTS = [ 
 LEFT_EYE_POINTS + RIGHT_EYE_POINTS + LEFT_BROW_POINTS + RIGHT_BROW_POINTS, 
 NOSE_POINTS + MOUTH_POINTS, 
] 
FEATHER_AMOUNT = 11 
def draw_convex_hull(im, points, color): 
 points = cv2.convexHull(points) 
 cv2.fillConvexPoly(im, points, color=color) 
def get_face_mask(im, landmarks): 
 im = numpy.zeros(im.shape[:2], dtype=numpy.float64) 
 for group in OVERLAY_POINTS: 
 draw_convex_hull(im, 
 landmarks[group], 
 color=1) 
 im = numpy.array([im, im, im]).transpose((1, 2, 0)) 
 im = (cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0) > 0) * 1.0 
 im = cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0) 
 return im 
mask = get_face_mask(im2, landmarks2) 
warped_mask = warp_im(mask, M, im1.shape) 
combined_mask = numpy.max([get_face_mask(im1, landmarks1), warped_mask], 
 axis=0) 

我们把上述过程分解:

get_face_mask()的定义是为一张图像和一个标记矩阵生成一个遮罩,它画出了两个白色的凸多边形:一个是眼睛周围的区域,一个是鼻子和嘴部周围的区域。之后它由11个像素向遮罩的边缘外部羽化扩展,可以帮助隐藏任何不连续的区域。

这样一个遮罩同时为这两个图像生成,使用与步骤2中相同的转换,可以使图像2的遮罩转化为图像1的坐标空间。

之后,通过一个element-wise最大值,这两个遮罩结合成一个。结合这两个遮罩是为了确保图像1被掩盖,而显现出图像2的特性。

最后,使用遮罩得到最终的图像:

output_im = im1 * (1.0 - combined_mask) + warped_corrected_im2 * combined_mask 

再附上两张图片素材给大家做到实时换脸:

私信我或关注猿来如此呀公众号,回复:视频学习,免费领取30天学习资源包

相关推荐

得物可观测平台架构升级:基于GreptimeDB的全新监控体系实践

一、摘要在前端可观测分析场景中,需要实时观测并处理多地、多环境的运行情况,以保障Web应用和移动端的可用性与性能。传统方案往往依赖代理Agent→消息队列→流计算引擎→OLAP存储...

warm-flow新春版:网关直连和流程图重构

本期主要解决了网关直连和流程图重构,可以自此之后可支持各种复杂的网关混合、多网关直连使用。-新增Ruoyi-Vue-Plus优秀开源集成案例更新日志[feat]导入、导出和保存等新增json格式支持...

扣子空间体验报告

在数字化时代,智能工具的应用正不断拓展到我们工作和生活的各个角落。从任务规划到项目执行,再到任务管理,作者深入探讨了这款工具在不同场景下的表现和潜力。通过具体的应用实例,文章展示了扣子空间如何帮助用户...

spider-flow:开源的可视化方式定义爬虫方案

spider-flow简介spider-flow是一个爬虫平台,以可视化推拽方式定义爬取流程,无需代码即可实现一个爬虫服务。spider-flow特性支持css选择器、正则提取支持JSON/XML格式...

solon-flow 你好世界!

solon-flow是一个基础级的流处理引擎(可用于业务规则、决策处理、计算编排、流程审批等......)。提供有“开放式”驱动定制支持,像jdbc有mysql或pgsql等驱动,可...

新一代开源爬虫平台:SpiderFlow

SpiderFlow:新一代爬虫平台,以图形化方式定义爬虫流程,不写代码即可完成爬虫。-精选真开源,释放新价值。概览Spider-Flow是一个开源的、面向所有用户的Web端爬虫构建平台,它使用Ja...

通过 SQL 训练机器学习模型的引擎

关注薪资待遇的同学应该知道,机器学习相关的岗位工资普遍偏高啊。同时随着各种通用机器学习框架的出现,机器学习的门槛也在逐渐降低,训练一个简单的机器学习模型变得不那么难。但是不得不承认对于一些数据相关的工...

鼠须管输入法rime for Mac

鼠须管输入法forMac是一款十分新颖的跨平台输入法软件,全名是中州韵输入法引擎,鼠须管输入法mac版不仅仅是一个输入法,而是一个输入法算法框架。Rime的基础架构十分精良,一套算法支持了拼音、...

Go语言 1.20 版本正式发布:新版详细介绍

Go1.20简介最新的Go版本1.20在Go1.19发布六个月后发布。它的大部分更改都在工具链、运行时和库的实现中。一如既往,该版本保持了Go1的兼容性承诺。我们期望几乎所...

iOS 10平台SpriteKit新特性之Tile Maps(上)

简介苹果公司在WWDC2016大会上向人们展示了一大批新的好东西。其中之一就是SpriteKitTileEditor。这款工具易于上手,而且看起来速度特别快。在本教程中,你将了解关于TileE...

程序员简历例句—范例Java、Python、C++模板

个人简介通用简介:有良好的代码风格,通过添加注释提高代码可读性,注重代码质量,研读过XXX,XXX等多个开源项目源码从而学习增强代码的健壮性与扩展性。具备良好的代码编程习惯及文档编写能力,参与多个高...

Telerik UI for iOS Q3 2015正式发布

近日,TelerikUIforiOS正式发布了Q32015。新版本新增对XCode7、Swift2.0和iOS9的支持,同时还新增了对数轴、不连续的日期时间轴等;改进TKDataPoin...

ios使用ijkplayer+nginx进行视频直播

上两节,我们讲到使用nginx和ngixn的rtmp模块搭建直播的服务器,接着我们讲解了在Android使用ijkplayer来作为我们的视频直播播放器,整个过程中,需要注意的就是ijlplayer编...

IOS技术分享|iOS快速生成开发文档(一)

前言对于开发人员而言,文档的作用不言而喻。文档不仅可以提高软件开发效率,还能便于以后的软件开发、使用和维护。本文主要讲述Objective-C快速生成开发文档工具appledoc。简介apple...

macOS下配置VS Code C++开发环境

本文介绍在苹果macOS操作系统下,配置VisualStudioCode的C/C++开发环境的过程,本环境使用Clang/LLVM编译器和调试器。一、前置条件本文默认前置条件是,您的开发设备已...