百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

Mysql 与 hadoop 数据同步(迁移),你需要知道 Sqoop

bigegpt 2024-08-28 12:22 6 浏览

上篇文章 Mysql 到 Hbase 数据如何实时同步,强大的 Streamsets 告诉你 我们说到了如何使用 Streamsets 来进行 mysql 到 hbase 的数据实时同步(迁移)。使用 Streamsets 的优点是部署简单,配置灵活,无需编写代码。

认真阅读上篇文章的朋友会发现,Streamsets 能够实时跟踪数据的变化,将数据同步更新到 hbase 中。但是对于历史数据(并且数据不改动的记录)的同步,文章中并没有提及到。当然,并不是因为 Streamsets 不能从事这些事情,而是笔者暂时没有使用它来进行历史数据的迁移。因此,对于历史数据的迁移,笔者今天来介绍另外一个工具 - Sqoop。相对于 Streamsets,大家应该更加熟悉 Sqoop。

如果你工作中需要将关系型数据库(Mysql、Oracle等等)中的数据同步到 hadoop(HDFS、hive、hbase) 中,或者将 hadoop 中的数据同步到关系型数据库中,那这篇文章应该能帮助到你。

注:Streamsets 以及 Sqoop 都属于数据同步、迁移方面比较流行的解决方案,类似的工具还有很多,比如 Datax、kettle 等等,从事数据方面工作的朋友可以去多多了解,找到适合自己工作场景的方案。

认识一下

Sqoop 的命名,仔细一看是不是有点像 sql 和 hadoop 两个词语的拼接产物。其实从它的命名来看也就很明显:它是用来将关系型数据库和 Hadoop 中的数据进行相互转移的工具,并且这种转换是双向的。看下图就能一目了然:

从关系型数据库到 hadoop 我们称之为 import,从 hadoop 到关系型数据库我们称之为 export。文章后面大家就会看到 "import"、"export" 对应命令的两个模式。

安装

对于 Sqoop 的安装,这里就不做介绍了,网上有很多的教程,因为是一个工具,所以安装起来也是很方便简单。需要注意的是 Sqoop 有两个大的版本:Sqoop1、Sqoop2。

访问 Sqoop 官网 ,官网上的 1.4.x 的为 Sqoop1, 1.99.* 为 Sqoop2。

关于 Sqoop1 与 Sqoop2 的区别,通俗来讲就是:

  1. sqoop1 只是一个客户端工具,Sqoop2 加入了 Server 来集中化管理连接器
  2. Sqoop1 通过命令行来工作,工作方式单一,Sqoop2 则有更多的方式来工作,比如 REST api接口、Web 页
  3. Sqoop2 加入权限安全机制

对于笔者来说,Sqoop 就是一个同步工具,命令行足够满足工作需求,并且大部分数据同步都是在同一个局域网内部(也就没有数据安全之类问题),所以选择的是 Sqoop1(具体版本是 1.4.6)

框架原理

通过上图可以看出, Sqoop Client 通过 shell 命令来使用 sqoop, sqoop 中的 Task Translater 将命令转换成 hadoop 中的 mapreduce 任务进行具体的数据操作。可以这样理解,例如 Mysql 中某个表数据同步到 hadoop 这个场景,Sqoop 会将表记录分成多份,每份分到各自 mapper 中去进行落地 hadoop(保证同步效率)。大家可能发现,其实这里的 mapreduce 没有 reduce,只有 map。

实操

了解了 Sqoop 是什么,能做什么以及大概的框架原理,接下来我们直接使用 Sqoop 命令来感受一下使用 Sqoop 是如何简单及有效。本文案例中的关系型数据库使用的是 mysql,oracle 以及其他使用 jdbc 连接的关系型数据库操作类似,差别不大。

运行 sqoop help 可以看到 Sqoop 提供了哪些操作,如下图

这些操作其实都会一一对应到 sqoop bin 目录下的一个个可运行脚本文件,如果想了解细节,可以打开这些脚本进行查看

工作中一般常用的几个操作或者命令如下:

  1. list-databases : 查看有哪些数据库
  2. list-tables : 查看数据库中有哪些表
  3. import : 关系型数据库到 hadoop 数据同步
  4. export : hadoop 到关系型数据库数据同步
  5. version :查看 Sqoop 版本

列出数据库

sqoop list-databases --connect jdbc:mysql://192.168.1.123:3306/ --username root --password 12345678

列出表

sqoop list-databases --connect jdbc:mysql://192.168.1.123:3306/databasename --username root --password 12345678

mysql 到 hdfs

sqoop import
--connect jdbc:mysql://192.168.1.123:3306/databasename
--username root
--password 12345678
--table tablename
--target-dir /hadoopDir/
--fields-terminalted-by '\t'
-m 1
--check-column id
--last-value num
--incremental append

--connect : 数据库的 JDBC URL,后面的 databasename 想要连接的数据库名称

--table : 数据库表

--username : 数据库用户名

--password : 数据库密码

--target-dir : HDFS 目标目录

--fields-terminated-by :数据导入后每个字段之间的分隔符

-m :mapper 的并发数量

--check-column : 指定增量导入时的参考列,这里是 id (主键)

--last-value : 上一次导入的最后一个值

--incremental append :导入方式为增量

注意:工作中需要增量同步的场景下,我们就可以使用 --incremental append 以及 --last-value。比如这里我们使用 id 来作为参考列,如果上次同步到了 1000, 这次我们想只同步新的数据,就可以带上参数 --last-value 1000。

mysql 到 hive

使用 imort --create-hive-table

--create-hive-table 
-m 1 
--connect jdbc:mysql://192.168.1.123:3306/databasename
--username root 
--password 12345678 
--table tablename
--hive-import 
--hive-database databasename_hive 
--hive-overwrite 
--hive-table tablename_hive

mysql 到 hbase

hbase shell
create_namespace 'database_tmp'
create 'database_tmp:table_tmp','info'
sqoop import 
--connect jdbc:mysql://192.168.1.123:3306/databasename
--username 'root' 
--password '12345678' 
--table 'tablename' 
--hbase-table 'database_tmp:table_tmp' 
--hbase-row-key 'id' 
--column-family 'info'

首先进入 hbase shell,创建好 namespace 以及 数据库。databasetmp 位命名空间,tabletmp 为数据库。

hdfs 到 mysql

sqoop export
--connect jdbc:mysql://192.168.1.123:3306/databasename
--username root
--password '12345678' 
--table tablename
--m 1
--export-dir /hadoopDir/
--input-fields-terminated-by '\t'
--columns="column1,column2"

--columns : 制定导出哪些列

hive 到 mysql

了解 hive 的朋友都知道,hive 的真实数据其实就是 hdfs 磁盘上的数据,所以 hive 到 mysql 的同步操作与 hdfs 到 mysql 的操作类似

hbase 到 mysql

目前 Sqoop 没有提供直接将 hbase 数据同步到 mysql 的操作

总结: 在 sql to hadoop 和 hadoop to sql 这种数据同步场景,Sqoop 是一个很有效且灵活的工具,大家不妨使用它来从事数据方面的工作。

相关推荐

得物可观测平台架构升级:基于GreptimeDB的全新监控体系实践

一、摘要在前端可观测分析场景中,需要实时观测并处理多地、多环境的运行情况,以保障Web应用和移动端的可用性与性能。传统方案往往依赖代理Agent→消息队列→流计算引擎→OLAP存储...

warm-flow新春版:网关直连和流程图重构

本期主要解决了网关直连和流程图重构,可以自此之后可支持各种复杂的网关混合、多网关直连使用。-新增Ruoyi-Vue-Plus优秀开源集成案例更新日志[feat]导入、导出和保存等新增json格式支持...

扣子空间体验报告

在数字化时代,智能工具的应用正不断拓展到我们工作和生活的各个角落。从任务规划到项目执行,再到任务管理,作者深入探讨了这款工具在不同场景下的表现和潜力。通过具体的应用实例,文章展示了扣子空间如何帮助用户...

spider-flow:开源的可视化方式定义爬虫方案

spider-flow简介spider-flow是一个爬虫平台,以可视化推拽方式定义爬取流程,无需代码即可实现一个爬虫服务。spider-flow特性支持css选择器、正则提取支持JSON/XML格式...

solon-flow 你好世界!

solon-flow是一个基础级的流处理引擎(可用于业务规则、决策处理、计算编排、流程审批等......)。提供有“开放式”驱动定制支持,像jdbc有mysql或pgsql等驱动,可...

新一代开源爬虫平台:SpiderFlow

SpiderFlow:新一代爬虫平台,以图形化方式定义爬虫流程,不写代码即可完成爬虫。-精选真开源,释放新价值。概览Spider-Flow是一个开源的、面向所有用户的Web端爬虫构建平台,它使用Ja...

通过 SQL 训练机器学习模型的引擎

关注薪资待遇的同学应该知道,机器学习相关的岗位工资普遍偏高啊。同时随着各种通用机器学习框架的出现,机器学习的门槛也在逐渐降低,训练一个简单的机器学习模型变得不那么难。但是不得不承认对于一些数据相关的工...

鼠须管输入法rime for Mac

鼠须管输入法forMac是一款十分新颖的跨平台输入法软件,全名是中州韵输入法引擎,鼠须管输入法mac版不仅仅是一个输入法,而是一个输入法算法框架。Rime的基础架构十分精良,一套算法支持了拼音、...

Go语言 1.20 版本正式发布:新版详细介绍

Go1.20简介最新的Go版本1.20在Go1.19发布六个月后发布。它的大部分更改都在工具链、运行时和库的实现中。一如既往,该版本保持了Go1的兼容性承诺。我们期望几乎所...

iOS 10平台SpriteKit新特性之Tile Maps(上)

简介苹果公司在WWDC2016大会上向人们展示了一大批新的好东西。其中之一就是SpriteKitTileEditor。这款工具易于上手,而且看起来速度特别快。在本教程中,你将了解关于TileE...

程序员简历例句—范例Java、Python、C++模板

个人简介通用简介:有良好的代码风格,通过添加注释提高代码可读性,注重代码质量,研读过XXX,XXX等多个开源项目源码从而学习增强代码的健壮性与扩展性。具备良好的代码编程习惯及文档编写能力,参与多个高...

Telerik UI for iOS Q3 2015正式发布

近日,TelerikUIforiOS正式发布了Q32015。新版本新增对XCode7、Swift2.0和iOS9的支持,同时还新增了对数轴、不连续的日期时间轴等;改进TKDataPoin...

ios使用ijkplayer+nginx进行视频直播

上两节,我们讲到使用nginx和ngixn的rtmp模块搭建直播的服务器,接着我们讲解了在Android使用ijkplayer来作为我们的视频直播播放器,整个过程中,需要注意的就是ijlplayer编...

IOS技术分享|iOS快速生成开发文档(一)

前言对于开发人员而言,文档的作用不言而喻。文档不仅可以提高软件开发效率,还能便于以后的软件开发、使用和维护。本文主要讲述Objective-C快速生成开发文档工具appledoc。简介apple...

macOS下配置VS Code C++开发环境

本文介绍在苹果macOS操作系统下,配置VisualStudioCode的C/C++开发环境的过程,本环境使用Clang/LLVM编译器和调试器。一、前置条件本文默认前置条件是,您的开发设备已...