百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

这里有8个流行的Python可视化工具包,你喜欢哪个?

bigegpt 2024-08-31 16:44 2 浏览

喜欢用 Python 做项目的小伙伴不免会遇到这种情况:做图表时,用哪种好看又实用的可视化工具包呢?之前文章里出现过漂亮的图表时,也总有读者在后台留言问该图表时用什么工具做的。下面,作者介绍了八种在 Python 中实现的可视化工具包,其中有些包还能用在其它语言中。快来试试你喜欢哪个?

用 Python 创建图形的方法有很多,但是哪种方法是最好的呢?当我们做可视化之前,要先明确一些关于图像目标的问题:你是想初步了解数据的分布情况?想展示时给人们留下深刻印象?也许你想给某人展示一个内在的形象,一个中庸的形象?

本文将介绍一些常用的 Python 可视化包,包括这些包的优缺点以及分别适用于什么样的场景。这篇文章只扩展到 2D 图,为下一次讲 3D 图和商业报表(dashboard)留了一些空间,不过这次要讲的包中,许多都可以很好地支持 3D 图和商业报表。

Matplotlib、Seaborn 和 Pandas

把这三个包放在一起有几个原因:首先 Seaborn 和 Pandas 是建立在 Matplotlib 之上的,当你在用 Seaborn 或 Pandas 中的 df.plot() 时,用的其实是别人用 Matplotlib 写的代码。因此,这些图在美化方面是相似的,自定义图时用的语法也都非常相似。

当提到这些可视化工具时,我想到三个词:探索(Exploratory)、数据(Data)、分析(Analysis)。这些包都很适合第一次探索数据,但要做演示时用这些包就不够了。

Matplotlib 是比较低级的库,但它所支持的自定义程度令人难以置信(所以不要简单地将其排除在演示所用的包之外!),但还有其它更适合做展示的工具。

Matplotlib 还可以选择样式(style selection),它模拟了像 ggplot2 和 xkcd 等很流行的美化工具。下面是我用 Matplotlib 及相关工具所做的示例图:

在处理篮球队薪资数据时,我想找出薪资中位数最高的团队。为了展示结果,我将每个球队的工资用颜色标成条形图,来说明球员加入哪一支球队才能获得更好的待遇。

import seaborn as sns
import matplotlib.pyplot as plt
color_order = ['xkcd:cerulean', 'xkcd:ocean',
 'xkcd:black','xkcd:royal purple',
 'xkcd:royal purple', 'xkcd:navy blue',
 'xkcd:powder blue', 'xkcd:light maroon', 
 'xkcd:lightish blue','xkcd:navy']
sns.barplot(x=top10.Team,
 y=top10.Salary,
 palette=color_order).set_title('Teams with Highest Median Salary')
plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))

第二个图是回归实验残差的 Q-Q 图。这张图的主要目的是展示如何用尽量少的线条做出一张有用的图,当然也许它可能不那么美观。

import matplotlib.pyplot as plt
import scipy.stats as stats
#model2 is a regression model
log_resid = model2.predict(X_test)-y_test
stats.probplot(log_resid, dist="norm", plot=plt)
plt.title("Normal Q-Q plot")
plt.show()

最终证明,Matplotlib 及其相关工具的效率很高,但就演示而言它们并不是最好的工具。

ggplot(2)

你可能会问,「Aaron,ggplot 是 R 中最常用的可视化包,但你不是要写 Python 的包吗?」。人们已经在 Python 中实现了 ggplot2,复制了这个包从美化到语法的一切内容。

在我看过的所有材料中,它的一切都和 ggplot2 很像,但这个包的好处是它依赖于 Pandas Python 包。不过 Pandas Python 包最近弃用了一些方法,导致 Python 版本不兼容。

如果你想在 R 中用真正的 ggplot(除了依赖关系外,它们的外观、感觉以及语法都是一样的),我在另外一篇文章中对此进行过讨论。

也就是说,如果你一定要在 Python 中用 ggplot,那你就必须要安装 0.19.2 版的 Pandas,但我建议你最好不要为了使用较低级的绘图包而降低 Pandas 的版本。

ggplot2(我觉得也包括 Python 的 ggplot)举足轻重的原因是它们用「图形语法」来构建图片。基本前提是你可以实例化图,然后分别添加不同的特征;也就是说,你可以分别对标题、坐标轴、数据点以及趋势线等进行美化。

下面是 ggplot 代码的简单示例。我们先用 ggplot 实例化图,设置美化属性和数据,然后添加点、主题以及坐标轴和标题标签。

#All Salaries
ggplot(data=df, aes(x=season_start, y=salary, colour=team)) +
 geom_point() +
 theme(legend.position="none") +
 labs(title = 'Salary Over Time', x='Year', y='Salary ($)')

Bokeh

Bokeh 很美。从概念上讲,Bokeh 类似于 ggplot,它们都是用图形语法来构建图片,但 Bokeh 具备可以做出专业图形和商业报表且便于使用的界面。为了说明这一点,我根据 538 Masculinity Survey 数据集写了制作直方图的代码:

import pandas as pd
from bokeh.plotting import figure
from bokeh.io import show
# is_masc is a one-hot encoded dataframe of responses to the question:
# "Do you identify as masculine?"
#Dataframe Prep
counts = is_masc.sum()
resps = is_masc.columns
#Bokeh
p2 = figure(title='Do You View Yourself As Masculine?',
 x_axis_label='Response',
 y_axis_label='Count',
 x_range=list(resps))
p2.vbar(x=resps, top=counts, width=0.6, fill_color='red', line_color='black')
show(p2)
#Pandas
counts.plot(kind='bar')

用 Bokeh 表示调查结果

红色的条形图表示 538 个人关于「你认为自己有男子汉气概吗?」这一问题的答案。9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。

我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。在制作美观且表现力强的图片时,我更倾向于使用 Bokeh——它已经帮我们完成了大量美化工作。

用 Pandas 表示相同的数据

蓝色的图是上面的第 17 行代码。这两个直方图的值是一样的,但目的不同。在探索性设置中,用 Pandas 写一行代码查看数据很方便,但 Bokeh 的美化功能非常强大。

Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。下图展示了一些随机趋势,其自定义程度更高:使用了图例和不同的颜色和线条。

Bokeh 还是制作交互式商业报表的绝佳工具。

Plotly

Plotly 非常强大,但用它设置和创建图形都要花费大量时间,而且都不直观。在用 Plotly 忙活了大半个上午后,我几乎什么都没做出来,干脆直接去吃饭了。我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。Ploty 入门时有一些要注意的点:

  • 安装时要有 API 秘钥,还要注册,不是只用 pip 安装就可以;
  • Plotly 所绘制的数据和布局对象是独一无二的,但并不直观;
  • 图片布局对我来说没有用(40 行代码毫无意义!)

但它也有优点,而且设置中的所有缺点都有相应的解决方法:

  • 你可以在 Plotly 网站和 Python 环境中编辑图片;
  • 支持交互式图片和商业报表;
  • Plotly 与 Mapbox 合作,可以自定义地图;
  • 很有潜力绘制优秀图形。

以下是我针对这个包编写的代码:

#plot 1 - barplot
# **note** - the layout lines do nothing and trip no errors
data = [go.Bar(x=team_ave_df.team,
 y=team_ave_df.turnovers_per_mp)]
layout = go.Layout(
 title=go.layout.Title(
 text='Turnovers per Minute by Team',
 xref='paper',
 x=0
 ),
 xaxis=go.layout.XAxis(
 title = go.layout.xaxis.Title(
 text='Team',
 font=dict(
 family='Courier New, monospace',
 size=18,
 color='#7f7f7f'
 )
 )
 ),
 yaxis=go.layout.YAxis(
 title = go.layout.yaxis.Title(
 text='Average Turnovers/Minute',
 font=dict(
 family='Courier New, monospace',
 size=18,
 color='#7f7f7f'
 )
 )
 ),
 autosize=True,
 hovermode='closest')
py.iplot(figure_or_data=data, layout=layout, filename='jupyter-plot', sharing='public', fileopt='overwrite')
#plot 2 - attempt at a scatterplot
data = [go.Scatter(x=player_year.minutes_played,
 y=player_year.salary,
 marker=go.scatter.Marker(color='red',
 size=3))]
layout = go.Layout(title="test",
 xaxis=dict(title='why'),
 yaxis=dict(title='plotly'))
py.iplot(figure_or_data=data, layout=layout, filename='jupyter-plot2', sharing='public')
[Image: image.png]

表示不同 NBA 球队每分钟平均失误数的条形图。

表示薪水和在 NBA 的打球时间之间关系的散点图

总体来说,开箱即用的美化工具看起来很好,但我多次尝试逐字复制文档和修改坐标轴标签时却失败了。但下面的图展示了 Plotly 的潜力,以及我为什么要在它身上花好几个小时:

Plotly 页面上的一些示例图

Pygal

Pygal 的名气就不那么大了,和其它常用的绘图包一样,它也是用图形框架语法来构建图像的。由于绘图目标比较简单,因此这是一个相对简单的绘图包。使用 Pygal 非常简单:

  • 实例化图片;
  • 用图片目标属性格式化;
  • 用 figure.add() 将数据添加到图片中。

我在使用 Pygal 的过程中遇到的主要问题在于图片渲染。必须要用 render_to_file 选项,然后在 web 浏览器中打开文件,才能看见我刚刚构建的东西。

最终看来这是值得的,因为图片是交互式的,有令人满意而且便于自定义的美化功能。总而言之,这个包看起来不错,但在文件的创建和渲染部分比较麻烦。

Networkx

虽然 Networkx 是基于 matplotlib 的,但它仍是图形分析和可视化的绝佳解决方案。图形和网络不是我的专业领域,但 Networkx 可以快速简便地用图形表示网络之间的连接。以下是我针对一个简单图形构建的不同的表示,以及一些从斯坦福 SNAP 下载的代码(关于绘制小型 Facebook 网络)。

我按编号(1~10)用颜色编码了每个节点,代码如下:

options = {
 'node_color' : range(len(G)),
 'node_size' : 300,
 'width' : 1,
 'with_labels' : False,
 'cmap' : plt.cm.coolwarm
}
nx.draw(G, **options)

用于可视化上面提到的稀疏 Facebook 图形的代码如下:

import itertools
import networkx as nx
import matplotlib.pyplot as plt
f = open('data/facebook/1684.circles', 'r')
circles = [line.split() for line in f]
f.close()
network = []
for circ in circles:
 cleaned = [int(val) for val in circ[1:]]
 network.append(cleaned)
G = nx.Graph()
for v in network:
 G.add_nodes_from(v)
edges = [itertools.combinations(net,2) for net in network]
for edge_group in edges:
 G.add_edges_from(edge_group)
options = {
 'node_color' : 'lime',
 'node_size' : 3,
 'width' : 1,
 'with_labels' : False,
}
nx.draw(G, **options)

这个图形非常稀疏,Networkx 通过最大化每个集群的间隔展现了这种稀疏化。

有很多数据可视化的包,但没法说哪个是最好的。希望阅读本文后,你可以了解到在不同的情境下,该如何使用不同的美化工具和代码。

原文链接:https://towardsdatascience.com/reviewing-python-visualization-packages-fa7fe12e622b

本文为机器之心编译,转载请联系本公众号获得授权。

?------------------------------------------------

加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com

投稿或寻求报道:content@jiqizhixin.com

广告 & 商务合作:bd@jiqizhixin.com

相关推荐

Java 泛型大揭秘:类型参数、通配符与最佳实践

引言在编程世界中,代码的可重用性和可维护性是至关重要的。为了实现这些目标,Java5引入了一种名为泛型(Generics)的强大功能。本文将详细介绍Java泛型的概念、优势和局限性,以及如何在...

K8s 的标签与选择器:流畅运维的秘诀

在Kubernetes的世界里,**标签(Label)和选择器(Selector)**并不是最炫酷的技术,但却是贯穿整个集群管理与运维流程的核心机制。正是它们让复杂的资源调度、查询、自动化运维变得...

哈希Hash算法:原理、应用(哈希算法 知乎)

原作者:Linux教程,原文地址:「链接」什么是哈希算法?哈希算法(HashAlgorithm),又称为散列算法或杂凑算法,是一种将任意长度的数据输入转换为固定长度输出值的数学函数。其输出结果通常被...

C#学习:基于LLM的简历评估程序(c# 简历)

前言在pocketflow的例子中看到了一个基于LLM的简历评估程序的例子,感觉还挺好玩的,为了练习一下C#,我最近使用C#重写了一个。准备不同的简历:image-20250528183949844查...

55顺位,砍41+14+3!季后赛也成得分王,难道他也是一名球星?

雷霆队最不可思议的新星:一个55号秀的疯狂逆袭!你是不是也觉得NBA最底层的55号秀,就只能当饮水机管理员?今年的55号秀阿龙·威金斯恐怕要打破你的认知了!常规赛阶段,这位二轮秀就像开了窍的天才,直接...

5分钟读懂C#字典对象(c# 字典获取值)

什么是字典对象在C#中,使用Dictionary类来管理由键值对组成的集合,这类集合被称为字典。字典最大的特点就是能够根据键来快速查找集合中的值,其键的定义不能重复,具有唯一性,相当于数组索引值,字典...

c#窗体传值(c# 跨窗体传递数据)

在WinForm编程中我们经常需要进行俩个窗体间的传值。下面我给出了两种方法,来实现传值一、在输入数据的界面中定义一个属性,供接受数据的窗体使用1、子窗体usingSystem;usingSyst...

C#入门篇章—委托(c#委托的理解)

C#委托1.委托的定义和使用委托的作用:如果要把方法作为函数来进行传递的话,就要用到委托。委托是一个类型,这个类型可以赋值一个方法的引用。C#的委托通过delegate关键字来声明。声明委托的...

C#.NET in、out、ref详解(c#.net framework)

简介在C#中,in、ref和out是用于修改方法参数传递方式的关键字,它们决定了参数是按值传递还是按引用传递,以及参数是否必须在传递前初始化。基本语义对比修饰符传递方式可读写性必须初始化调用...

C#广义表(广义表headtail)

在C#中,广义表(GeneralizedList)是一种特殊的数据结构,它是线性表的推广。广义表可以包含单个元素(称为原子),也可以包含另一个广义表(称为子表)。以下是一个简单的C#广义表示例代...

「C#.NET 拾遗补漏」04:你必须知道的反射

阅读本文大概需要3分钟。通常,反射用于动态获取对象的类型、属性和方法等信息。今天带你玩转反射,来汇总一下反射的各种常见操作,捡漏看看有没有你不知道的。获取类型的成员Type类的GetMembe...

C#启动外部程序的问题(c#怎么启动)

IT&OT的深度融合是智能制造的基石。本公众号将聚焦于PLC编程与上位机开发。除理论知识外,也会结合我们团队在开发过程中遇到的具体问题介绍一些项目经验。在使用C#开发上位机时,有时会需要启动外部的一些...

全网最狠C#面试拷问:这20道题没答出来,别说你懂.NET!

在竞争激烈的C#开发岗位求职过程中,面试是必经的一道关卡。而一场高质量的面试,不仅能筛选出真正掌握C#和.NET技术精髓的人才,也能让求职者对自身技术水平有更清晰的认知。今天,就为大家精心准备了20道...

C#匿名方法(c#匿名方法与匿名类)

C#中的匿名方法是一种没有名称只有主体的方法,它提供了一种传递代码块作为委托参数的技术。以下是关于C#匿名方法的一些重要特点和用法:特点省略参数列表:使用匿名方法可省略参数列表,这意味着匿名方法...

C# Windows窗体(.Net Framework)知识总结

Windows窗体可大致分为Form窗体和MDI窗体,Form窗体没什么好细说的,知识点总结都在思维导图里面了,下文将围绕MDI窗体来讲述。MDI(MultipleDocumentInterfac...