百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

Spark性能调优

bigegpt 2024-09-04 03:06 4 浏览

通常我们对一个系统进行性能优化无怪乎两个步骤——性能监控和参数调整,本文主要分享的也是这两方面内容。

性能监控工具

【Spark监控工具】

Spark提供了一些基本的Web监控页面,对于日常监控十分有用。

1. Application Web UI

http://master:4040(默认端口是4040,可以通过spark.ui.port修改)可获得这些信息:(1)stages和tasks调度情况;(2)RDD大小及内存使用;(3)系统环境信息;(4)正在执行的executor信息。

2. history server

当Spark应用退出后,仍可以获得历史Spark应用的stages和tasks执行信息,便于分析程序不明原因挂掉的情况。配置方法如下:

(1)$SPARK_HOME/conf/spark-env.sh

export SPARK_HISTORY_OPTS="-Dspark.history.retainedApplications=50

Dspark.history.fs.logDirectory=hdfs://hadoop000:8020/directory"

说明:spark.history.retainedApplica-tions仅显示最近50个应用spark.history.fs.logDirectory:Spark History Server页面只展示该路径下的信息。

(2)$SPARK_HOME/conf/spark-defaults.conf

spark.eventLog.enabled true

spark.eventLog.dir hdfs://hadoop000:8020/directory #应用在运行过程中所有的信息均记录在该属性指定的路径下

3. spark.eventLog.compress true

(1)HistoryServer启动

$SPARK_HOMR/bin/start-histrory-server.sh

(2)HistoryServer停止

$SPARK_HOMR/bin/stop-histrory-server.sh

4. ganglia

通过配置ganglia,可以分析集群的使用状况和资源瓶颈,但是默认情况下ganglia是未被打包的,需要在mvn编译时添加-Pspark-ganglia-lgpl,并修改配置文件$SPARK_HOME/conf/metrics.properties。

5. Executor logs

Standalone模式:$SPARK_HOME/logs

YARN模式:在yarn-site.xml文件中配置了YARN日志的存放位置:yarn.nodemanager.log-dirs,或使用命令获取yarn logs -applicationId。

【其他监控工具】

1. Nmon(http://www.ibm.com/developerworks/aix/library/au-analyze_aix/)

Nmon 输入:c:CPU n:网络 m:内存 d:磁盘

2. Jmeter(http://jmeter. apache.org/)

通常使用Jmeter做系统性能参数的实时展示,JMeter的安装非常简单,从官方网站上下载,解压之后即可使用。运行命令在%JMETER_HOME%/bin下,对于 Windows 用户,直接使用jmeter.bat。

启动jmeter:创建测试计划,设置线程组设置循环次数。

添加监听器:jp@gc - PerfMon Metrics Collector。

设置监听器:监听主机端口及监听内容,例如CPU。

启动监听:可以实时获得节点的CPU状态信息,从图4可看出CPU已出现瓶颈。

3. Jprofiler(http://www.ej-technologies.com/products/jprofiler/overview.html)

JProfiler是一个全功能的Java剖析工具(profiler),专用于分析J2SE和J2EE应用程式。它把CPU、线程和内存的剖析组合在一个强大的应用中。JProfiler的GUI可以更方便地找到性能瓶颈、抓住内存泄漏(memory leaks),并解决多线程的问题。例如分析哪个对象占用的内存比较多;哪个方法占用较大的CPU资源等;我们通常使用Jprofiler来监控Spark应用在local模式下运行时的性能瓶颈和内存泄漏情况。

上述几个工具可以直接通过提供的链接了解详细的使用方法。

Spark调优

【Spark集群并行度】

在Spark集群环境下,只有足够高的并行度才能使系统资源得到充分的利用,可以通过修改spark-env.sh来调整Executor的数量和使用资源,Standalone和YARN方式资源的调度管理是不同的。

在Standalone模式下:

1. 每个节点使用的最大内存数:SPARK_WORKER_INSTANCES*SPARK_WORKER_MEMORY;

2. 每个节点的最大并发task数:SPARK_WORKER_INSTANCES*SPARK_WORKER_CORES。

在YARN模式下:

1. 集群task并行度:SPARK_ EXECUTOR_INSTANCES* SPARK_EXECUTOR_CORES;

2. 集群内存总量:(executor个数) * (SPARK_EXECUTOR_MEMORY+ spark.yarn.executor.memoryOverhead)+(SPARK_DRIVER_MEMORY+spark.yarn.driver.memoryOverhead)。

重点强调:Spark对Executor和Driver额外添加堆内存大小,Executor端:由spark.yarn.executor.memoryOverhead设置,默认值executorMemory * 0.07与384的最大值。Driver端:由spark.yarn.driver.memoryOverhead设置,默认值driverMemory * 0.07与384的最大值。

通过调整上述参数,可以提高集群并行度,让系统同时执行的任务更多,那么对于相同的任务,并行度高了,可以减少轮询次数。举例说明:如果一个stage有100task,并行度为50,那么执行完这次任务,需要轮询两次才能完成,如果并行度为100,那么一次就可以了。

但是在资源相同的情况,并行度高了,相应的Executor内存就会减少,所以需要根据实际实况协调内存和core。此外,Spark能够非常有效的支持短时间任务(例如:200ms),因为会对所有的任务复用JVM,这样能减小任务启动的消耗,Standalone模式下,core可以允许1-2倍于物理core的数量进行超配。

【Spark任务数量调整】

Spark的任务数由stage中的起始的所有RDD的partition之和数量决定,所以需要了解每个RDD的partition的计算方法。以Spark应用从HDFS读取数据为例,HadoopRDD的partition切分方法完全继承于MapReduce中的FileInputFormat,具体的partition数量由HDFS的块大小、mapred.min.split.size的大小、文件的压缩方式等多个因素决定,详情需要参见FileInputFormat的代码。

【Spark内存调优】

内存优化有三个方面的考虑:对象所占用的内存,访问对象的消耗以及垃圾回收所占用的开销。

1. 对象所占内存,优化数据结构

Spark 默认使用Java序列化对象,虽然Java对象的访问速度更快,但其占用的空间通常比其内部的属性数据大2-5倍。为了减少内存的使用,减少Java序列化后的额外开销,下面列举一些Spark官网(http://spark.apache.org/docs/latest/tuning.html#tuning-data-structures)提供的方法。

(1)使用对象数组以及原始类型(primitive type)数组以替代Java或者Scala集合类(collection class)。fastutil 库为原始数据类型提供了非常方便的集合类,且兼容Java标准类库。

(2)尽可能地避免采用含有指针的嵌套数据结构来保存小对象。

(3)考虑采用数字ID或者枚举类型以便替代String类型的主键。

(4)如果内存少于32GB,设置JVM参数-XX:+UseCom-pressedOops以便将8字节指针修改成4字节。与此同时,在Java 7或者更高版本,设置JVM参数-XX:+UseC-----ompressedStrings以便采用8比特来编码每一个ASCII字符。

2. 内存回收

(1)获取内存统计信息:优化内存前需要了解集群的内存回收频率、内存回收耗费时间等信息,可以在spark-env.sh中设置SPARK_JAVA_OPTS=“-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps $ SPARK_JAVA_OPTS”来获取每一次内存回收的信息。

(2)优化缓存大小:默认情况Spark采用运行内存(spark.executor.memory)的60%来进行RDD缓存。这表明在任务执行期间,有40%的内存可以用来进行对象创建。如果任务运行速度变慢且JVM频繁进行内存回收,或者内存空间不足,那么降低缓存大小设置可以减少内存消耗,可以降低spark.storage.memoryFraction的大小。

3. 频繁GC或者OOM

针对这种情况,首先要确定现象是发生在Driver端还是在Executor端,然后在分别处理。

Driver端:通常由于计算过大的结果集被回收到Driver端导致,需要调大Driver端的内存解决,或者进一步减少结果集的数量。

Executor端:

(1)以外部数据作为输入的Stage:这类Stage中出现GC通常是因为在Map侧进行map-side-combine时,由于group过多引起的。解决方法可以增加partition的数量(即task的数量)来减少每个task要处理的数据,来减少GC的可能性。

(2)以shuffle作为输入的Stage:这类Stage中出现GC的通常原因也是和shuffle有关,常见原因是某一个或多个group的数据过多,也就是所谓的数据倾斜,最简单的办法就是增加shuffle的task数量,比如在SparkSQL中设置SET spark.sql.shuffle.partitions=400,如果调大shuffle的task无法解决问题,说明你的数据倾斜很严重,某一个group的数据远远大于其他的group,需要你在业务逻辑上进行调整,预先针对较大的group做单独处理。

【修改序列化】

使用Kryo序列化,因为Kryo序列化结果比Java标准序列化更小,更快速。具体方法:spark-default.conf 里设置spark.serializer为org.apache.spark.serializer.KryoSerializer 。

参考官方文档(http://spark.apache.org/docs/latest/tuning.html#summary):对于大多数程序而言,采用Kryo框架以及序列化能够解决性能相关的大部分问题。

【Spark 磁盘调优】

在集群环境下,如果数据分布不均匀,造成节点间任务分布不均匀,也会导致节点间源数据不必要的网络传输,从而大大影响系统性能,那么对于磁盘调优最好先将数据资源分布均匀。除此之外,还可以对源数据做一定的处理:

1. 在内存允许范围内,将频繁访问的文件或数据置于内存中;

2. 如果磁盘充裕,可以适当增加源数据在HDFS上的备份数以减少网络传输;

3. Spark支持多种文件格式及压缩方式,根据不同的应用环境进行合理的选择。如果每次计算只需要其中的某几列,可以使用列式文件格式,以减少磁盘I/O,常用的列式有parquet、rcfile。如果文件过大,将原文件压缩可以减少磁盘I/O,例如:gzip、snappy、lzo。

【其他】

广播变量(broadcast)

当task中需要访问一个Driver端较大的数据时,可以通过使用SparkContext的广播变量来减小每一个任务的大小以及在集群中启动作业的消耗。参考官方文档http://spark.apache.org/docs/latest/tuning.html#broadcasting-large-variables。

开启推测机制

推测机制后,如果集群中,某一台机器的几个task特别慢,推测机制会将任务分配到其他机器执行,最后Spark会选取最快的作为最终结果。

在spark-default.conf 中添加:spark.speculation true

推测机制与以下几个参数有关:

1. spark.speculation.interval 100:检测周期,单位毫秒;

2. spark.speculation.quantile 0.75:完成task的百分比时启动推测;

3. spark.speculation.multiplier 1.5:比其他的慢多少倍时启动推测。

总结

Spark系统的性能调优是一个很复杂的过程,需要对Spark以及Hadoop有足够的知识储备。从业务应用平台(Spark)、存储(HDFS)、操作系统、硬件等多个层面都会对性能产生很大的影响。借助于多种性能监控工具,我们可以很好地了解系统的性能表现,并根据上面介绍的经验进行调整。

作者简介:田毅,亚信科技大数据平台部门研发经理,Spark Contributor,北京Spark Meetup发起人,主要关注SparkSQL与Spark Streaming。

本文选自程序员电子版2015年3月A刊,该期更多文章请查看这里。2000年创刊至今所有文章目录请查看程序员封面秀。欢迎订阅程序员电子版(含iPad版、Android版、PDF版)。

相关推荐

当Frida来“敲”门(frida是什么)

0x1渗透测试瓶颈目前,碰到越来越多的大客户都会将核心资产业务集中在统一的APP上,或者对自己比较重要的APP,如自己的主业务,办公APP进行加壳,流量加密,投入了很多精力在移动端的防护上。而现在挖...

服务端性能测试实战3-性能测试脚本开发

前言在前面的两篇文章中,我们分别介绍了性能测试的理论知识以及性能测试计划制定,本篇文章将重点介绍性能测试脚本开发。脚本开发将分为两个阶段:阶段一:了解各个接口的入参、出参,使用Python代码模拟前端...

Springboot整合Apache Ftpserver拓展功能及业务讲解(三)

今日分享每天分享技术实战干货,技术在于积累和收藏,希望可以帮助到您,同时也希望获得您的支持和关注。架构开源地址:https://gitee.com/msxyspringboot整合Ftpserver参...

Linux和Windows下:Python Crypto模块安装方式区别

一、Linux环境下:fromCrypto.SignatureimportPKCS1_v1_5如果导包报错:ImportError:Nomodulenamed'Crypt...

Python 3 加密简介(python des加密解密)

Python3的标准库中是没多少用来解决加密的,不过却有用于处理哈希的库。在这里我们会对其进行一个简单的介绍,但重点会放在两个第三方的软件包:PyCrypto和cryptography上,我...

怎样从零开始编译一个魔兽世界开源服务端Windows

第二章:编译和安装我是艾西,上期我们讲述到编译一个魔兽世界开源服务端环境准备,那么今天跟大家聊聊怎么编译和安装我们直接进入正题(上一章没有看到的小伙伴可以点我主页查看)编译服务端:在D盘新建一个文件夹...

附1-Conda部署安装及基本使用(conda安装教程)

Windows环境安装安装介质下载下载地址:https://www.anaconda.com/products/individual安装Anaconda安装时,选择自定义安装,选择自定义安装路径:配置...

如何配置全世界最小的 MySQL 服务器

配置全世界最小的MySQL服务器——如何在一块IntelEdison为控制板上安装一个MySQL服务器。介绍在我最近的一篇博文中,物联网,消息以及MySQL,我展示了如果Partic...

如何使用Github Action来自动化编译PolarDB-PG数据库

随着PolarDB在国产数据库领域荣膺桂冠并持续获得广泛认可,越来越多的学生和技术爱好者开始关注并涉足这款由阿里巴巴集团倾力打造且性能卓越的关系型云原生数据库。有很多同学想要上手尝试,却卡在了编译数据...

面向NDK开发者的Android 7.0变更(ndk android.mk)

订阅Google官方微信公众号:谷歌开发者。与谷歌一起创造未来!受Android平台其他改进的影响,为了方便加载本机代码,AndroidM和N中的动态链接器对编写整洁且跨平台兼容的本机...

信创改造--人大金仓(Kingbase)数据库安装、备份恢复的问题纪要

问题一:在安装KingbaseES时,安装用户对于安装路径需有“读”、“写”、“执行”的权限。在Linux系统中,需要以非root用户执行安装程序,且该用户要有标准的home目录,您可...

OpenSSH 安全漏洞,修补操作一手掌握

1.漏洞概述近日,国家信息安全漏洞库(CNNVD)收到关于OpenSSH安全漏洞(CNNVD-202407-017、CVE-2024-6387)情况的报送。攻击者可以利用该漏洞在无需认证的情况下,通...

Linux:lsof命令详解(linux lsof命令详解)

介绍欢迎来到这篇博客。在这篇博客中,我们将学习Unix/Linux系统上的lsof命令行工具。命令行工具是您使用CLI(命令行界面)而不是GUI(图形用户界面)运行的程序或工具。lsoflsof代表&...

幻隐说固态第一期:固态硬盘接口类别

前排声明所有信息来源于网络收集,如有错误请评论区指出更正。废话不多说,目前固态硬盘接口按速度由慢到快分有这几类:SATA、mSATA、SATAExpress、PCI-E、m.2、u.2。下面我们来...

新品轰炸 影驰SSD多款产品登Computex

分享泡泡网SSD固态硬盘频道6月6日台北电脑展作为全球第二、亚洲最大的3C/IT产业链专业展,吸引了众多IT厂商和全球各地媒体的热烈关注,全球存储新势力—影驰,也积极参与其中,为广大玩家朋友带来了...