百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

ELK Stack 难点总结和整体优化

bigegpt 2024-09-09 01:19 11 浏览

目录:

一、ELK实用知识点总结

  • 编码转换问题(主要就是中文乱码)
  • 删除日志中的多余行
  • Grok处理多种不同日志格式
  • 日志多行合并处理-multiline插件
  • Logstash filter中的date使用
  • 对多类日志分类处理


二、对ELK整体性能的优化

  • 性能分析
  • 关于收集日志的选择:logstash/filter
  • Logstash的优化相关配置
  • 引入Redis的相关问题
  • Elasticsearch节点优化配置
  • 性能检查


ELK实用知识点总结



1、编码转换问题

这个问题,主要就是中文乱码。

input中的codec=>plain转码:

codec => plain {

charset => "GB2312"

}

将GB2312的文本编码,转为UTF-8的编码。

也可以在filebeat中实现编码的转换(推荐):

filebeat.prospectors:

- input_type: log

paths:

- c:\Users\Administrator\Desktop\performanceTrace.txt

encoding: GB2312


2、删除日志中的多余行

logstash filter中drop删除:

if ([message] =~ "^20.*-\ task\ request,.*,start\ time.*") { #用正则需删除的多余行

drop {}

}


日志示例:

2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59 #需删除的行

-- Request String :

{"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End

-- Response String :

{"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End


3、grok处理多种日志格式

日志示例:

2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59

-- Request String :

{"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End

-- Response String :

{"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End


在logstash filter中grok分别处理3行:

match => {

"message" => "^20.*-\ task\ request,.*,start\ time\:%{TIMESTAMP_ISO8601:RequestTime}"

match => {

"message" => "^--\ Request\ String\ :\ \{\"UserName\":\"%{NUMBER:UserName:int}\",\"Pwd\":\"(?<Pwd>.*)\",\"DeviceType\":%{NUMBER:DeviceType:int},\"DeviceId\":\"(?<DeviceId>.*)\",\"EquipmentNo\":(?<EquipmentNo>.*),\"SSID\":(?<SSID>.*),\"RegisterPhones\":(?<RegisterPhones>.*),\"AppKey\":\"(?<AppKey>.*)\",\"Version\":\"(?<Version>.*)\"\}\ --\ \End.*"

}

match => {

"message" => "^--\ Response\ String\ :\ \{\"ErrorCode\":%{NUMBER:ErrorCode:int},\"Success\":(?<Success>[a-z]*),\"ErrorMsg\":(?<ErrorMsg>.*),\"Result\":(?<Result>.*),\"WaitInterval\":%{NUMBER:WaitInterval:int}\}\ --\ \End.*"

}

... 等多行


4、日志多行合并处理—multiline插件(重点)

示例:

①日志

2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59

-- Request String :

{"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End

-- Response String :

{"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End


②logstash grok对合并后多行的处理。合并多行后续都一样,如下:

filter {

grok {

match => {

"message" => "^%{TIMESTAMP_ISO8601:InsertTime}\ .*-\ task\ request,.*,start\ time:%{TIMESTAMP_ISO8601:RequestTime}\n--\ Request\ String\ :\ \{\"UserName\":\"%{NUMBER:UserName:int}\",\"Pwd\":\"(?<Pwd>.*)\",\"DeviceType\":%{NUMBER:DeviceType:int},\"DeviceId\":\"(?<DeviceId>.*)\",\"EquipmentNo\":(?<EquipmentNo>.*),\"SSID\":(?<SSID>.*),\"RegisterPhones\":(?<RegisterPhones>.*),\"AppKey\":\"(?<AppKey>.*)\",\"Version\":\"(?<Version>.*)\"\}\ --\ \End\n--\ Response\ String\ :\ \{\"ErrorCode\":%{NUMBER:ErrorCode:int},\"Success\":(?<Success>[a-z]*),\"ErrorMsg\":(?<ErrorMsg>.*),\"Result\":(?<Result>.*),\"WaitInterval\":%{NUMBER:WaitInterval:int}\}\ --\ \End"

}

}

}


在filebeat中使用multiline插件(推荐):

①介绍multiline

  • pattern:正则匹配从哪行合并;
  • negate:true/false,匹配到pattern 部分开始合并,还是不配到的合并。


match:after/before(需自己理解)

  • after:匹配到pattern 部分后合并,注意:这种情况最后一行日志不会被匹配处理;
  • before:匹配到pattern 部分前合并(推荐)。


②5.5版本之后(before为例)

filebeat.prospectors:

- input_type: log

paths:

- /root/performanceTrace*

fields:

type: zidonghualog

multiline.pattern: '.*\"WaitInterval\":.*--\ End'

multiline.negate: true

multiline.match: before


③5.5版本之前(after为例)

filebeat.prospectors:

- input_type: log

paths:

- /root/performanceTrace*

input_type: log

multiline:

pattern: '^20.*'

negate: true

match: after


在logstash input中使用multiline插件(没有filebeat时推荐):

①介绍multiline

  • pattern:正则匹配从哪行合并;
  • negate:true/false,匹配到pattern 部分开始合并,还是不配到的合并。


what:previous/next(需自己理解)

  • previous:相当于filebeat 的after;
  • next:相当于filebeat 的before。


②用法

input {

file {

path => ["/root/logs/log2"]

start_position => "beginning"

codec => multiline {

pattern => "^20.*"

negate => true

what => "previous"

}

}

}


在logstash filter中使用multiline插件(不推荐):

不推荐的原因:

  • filter设置multiline后,pipline worker会自动降为1;
  • 5.5 版本官方把multiline 去除了,要使用的话需下载,下载命令如下:


/usr/share/logstash/bin/logstash-plugin install logstash-filter-multiline


示例:

filter {

multiline {

pattern => "^20.*"

negate => true

what => "previous"

}

}


5、logstash filter中的date使用

日志示例:

2018-03-20 10:44:01 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59


date使用:

date {

match => ["InsertTime","YYYY-MM-dd HH:mm:ss "]

remove_field => "InsertTime"

}

注:match => ["timestamp" ,"dd/MMM/YYYY H:m:s Z"]

匹配这个字段,字段的格式为:日日/月月月/年年年年 时/分/秒 时区,也可以写为:match => ["timestamp","ISO8601"](推荐)

date介绍:

就是将匹配日志中时间的key替换为@timestamp的时间,因为@timestamp的时间是日志送到logstash的时间,并不是日志中真正的时间。

6、对多类日志分类处理(重点)

在filebeat的配置中添加type分类:

filebeat:

prospectors:

-

paths:

#- /mnt/data/WebApiDebugLog.txt*

- /mnt/data_total/WebApiDebugLog.txt*

fields:

type: WebApiDebugLog_total

-

paths:

- /mnt/data_request/WebApiDebugLog.txt*

#- /mnt/data/WebApiDebugLog.txt*

fields:

type: WebApiDebugLog_request

-

paths:

- /mnt/data_report/WebApiDebugLog.txt*

#- /mnt/data/WebApiDebugLog.txt*

fields:

type: WebApiDebugLog_report

在logstash filter中使用if,可进行对不同类进行不同处理:

filter {

if [fields][type] == "WebApiDebugLog_request" { #对request 类日志

if ([message] =~ "^20.*-\ task\ report,.*,start\ time.*") { #删除report 行

drop {}

}

grok {

match => {"... ..."}

}

}

在logstash output中使用if:

if [fields][type] == "WebApiDebugLog_total" {

elasticsearch {

hosts => ["6.6.6.6:9200"]

index => "logstashl-WebApiDebugLog_total-%{+YYYY.MM.dd}"

document_type => "WebApiDebugLog_total_logs"

}


对ELK整体性能的优化



1、性能分析


服务器硬件Linux:1cpu4GRAM


假设每条日志250Byte。

分析:

①logstash-Linux:1cpu 4GRAM

  • 每秒500条日志;
  • 去掉ruby每秒660条日志;
  • 去掉grok后每秒1000条数据。


②filebeat-Linux:1cpu 4GRAM

  • 每秒2500-3500条数据;
  • 每天每台机器可处理:24h*60min*60sec* 3000*250Byte=64,800,000,000Bytes,约64G。


瓶颈在logstash从Redis中取数据存入ES,开启一个logstash,每秒约处理6000条数据;开启两个logstash,每秒约处理10000条数据(cpu已基本跑满);


logstash的启动过程占用大量系统资源,因为脚本中要检查java、ruby以及其他环境变量,启动后资源占用会恢复到正常状态。


2、关于收集日志的选择:logstash/filter


没有原则要求使用filebeat或logstash,两者作为shipper的功能是一样的。

区别在于:

  • logstash由于集成了众多插件,如grok、ruby,所以相比beat是重量级的;
  • logstash启动后占用资源更多,如果硬件资源足够则无需考虑二者差异;
  • logstash基于JVM,支持跨平台;而beat使用golang编写,AIX不支持;
  • AIX 64bit平台上需要安装jdk(jre) 1.7 32bit,64bit的不支持;
  • filebeat可以直接输入到ES,但是系统中存在logstash直接输入到ES的情况,这将造成不同的索引类型造成检索复杂,最好统一输入到els 的源。


总结:

logstash/filter总之各有千秋,但是我推荐选择:在每个需要收集的日志服务器上配置filebeat,因为轻量级,用于收集日志;再统一输出给logstash,做对日志的处理;最后统一由logstash输出给els。


3、logstash的优化相关配置


可以优化的参数,可根据自己的硬件进行优化配置:


①pipeline线程数,官方建议是等于CPU内核数

  • 默认配置 ---> pipeline.workers: 2;
  • 可优化为 ---> pipeline.workers: CPU内核数(或几倍CPU内核数)。


②实际output时的线程数

  • 默认配置 ---> pipeline.output.workers: 1;
  • 可优化为 ---> pipeline.output.workers: 不超过pipeline线程数。


③每次发送的事件数

  • 默认配置 ---> pipeline.batch.size: 125;
  • 可优化为 ---> pipeline.batch.size: 1000。


④发送延时

  • 默认配置 ---> pipeline.batch.delay: 5;
  • 可优化为 ---> pipeline.batch.size: 10。


总结:

  • 通过设置-w参数指定pipeline worker数量,也可直接修改配置文件logstash.yml。这会提高filter和output的线程数,如果需要的话,将其设置为cpu核心数的几倍是安全的,线程在I/O上是空闲的。
  • 默认每个输出在一个pipeline worker线程上活动,可以在输出output中设置workers设置,不要将该值设置大于pipeline worker数。
  • 还可以设置输出的batch_size数,例如ES输出与batch size一致。
  • filter设置multiline后,pipline worker会自动将为1,如果使用filebeat,建议在beat中就使用multiline,如果使用logstash作为shipper,建议在input中设置multiline,不要在filter中设置multiline。


Logstash中的JVM配置文件:

Logstash是一个基于Java开发的程序,需要运行在JVM中,可以通过配置jvm.options来针对JVM进行设定。比如内存的最大最小、垃圾清理机制等等。JVM的内存分配不能太大不能太小,太大会拖慢操作系统。太小导致无法启动。默认如下:

  • Xms256m#最小使用内存;
  • Xmx1g#最大使用内存。


4、引入Redis的相关问题


filebeat可以直接输入到logstash(indexer),但logstash没有存储功能,如果需要重启需要先停所有连入的beat,再停logstash,造成运维麻烦;另外如果logstash发生异常则会丢失数据;引入Redis作为数据缓冲池,当logstash异常停止后可以从Redis的客户端看到数据缓存在Redis中;

Redis可以使用list(最长支持4,294,967,295条)或发布订阅存储模式;


Redis做ELK缓冲队列的优化:

  • bind 0.0.0.0 #不要监听本地端口;
  • requirepass ilinux.io #加密码,为了安全运行;
  • 只做队列,没必要持久存储,把所有持久化功能关掉:
  • 快照(RDB文件)和追加式文件(AOF文件),性能更好;
  • save "" 禁用快照;
  • appendonly no 关闭RDB。
  • 把内存的淘汰策略关掉,把内存空间最大
  • maxmemory 0 #maxmemory为0的时候表示我们对Redis的内存使用没有限制。


5、Elasticsearch节点优化配置


服务器硬件配置,OS参数:

1)/etc/sysctl.conf 配置

vim /etc/sysctl.conf

① vm.swappiness = 1 #ES 推荐将此参数设置为 1,大幅降低 swap 分区的大小,强制最大程度的使用内存,注意,这里不要设置为 0, 这会很可能会造成 OOM

② net.core.somaxconn = 65535 #定义了每个端口最大的监听队列的长度

③ vm.max_map_count= 262144 #限制一个进程可以拥有的VMA(虚拟内存区域)的数量。虚拟内存区域是一个连续的虚拟地址空间区域。当VMA 的数量超过这个值,OOM

④ fs.file-max = 518144 #设置 Linux 内核分配的文件句柄的最大数量

[root@elasticsearch]# sysctl -p #生效一下

2)limits.conf 配置

vim /etc/security/limits.conf

elasticsearch soft nofile 65535

elasticsearch hard nofile 65535

elasticsearch soft memlock unlimited

elasticsearch hard memlock unlimited

3)为了使以上参数永久生效,还要设置两个地方:

vim /etc/pam.d/common-session-noninteractive

vim /etc/pam.d/common-session


添加如下属性:

session required pam_limits.so

可能需重启后生效。


Elasticsearch中的JVM配置文件:

-Xms2g

-Xmx2g

  • 将最小堆大小(Xms)和最大堆大小(Xmx)设置为彼此相等。
  • Elasticsearch可用的堆越多,可用于缓存的内存就越多。但请注意,太多的堆可能会使您长时间垃圾收集暂停。
  • 设置Xmx为不超过物理RAM的50%,以确保有足够的物理内存留给内核文件系统缓存。
  • 不要设置Xmx为JVM用于压缩对象指针的临界值以上;确切的截止值有所不同,但接近32 GB。不要超过32G,如果空间大,多跑几个实例,不要让一个实例太大内存。


Elasticsearch配置文件优化参数:

1)vim elasticsearch.yml

bootstrap.memory_lock: true #锁住内存,不使用swap

#缓存、线程等优化如下

bootstrap.mlockall: true

transport.tcp.compress: true

indices.fielddata.cache.size: 40%

indices.cache.filter.size: 30%

indices.cache.filter.terms.size: 1024mb

threadpool:

search:

type: cached

size: 100

queue_size: 2000

2)设置环境变量

vim /etc/profile.d/elasticsearch.sh

export ES_HE AP _SIZE=2g #Heap Size不超过物理内存的一半,且小于32G。


集群的优化(我未使用集群):

  • ES是分布式存储,当设置同样的cluster.name后会自动发现并加入集群;
  • 集群会自动选举一个master,当master宕机后重新选举;
  • 为防止"脑裂",集群中个数最好为奇数个;
  • 为有效管理节点,可关闭广播discovery. zen.ping.multicast.enabled: false,并设置单播节点组discovery.zen.ping.unicast.hosts: ["ip1", "ip2", "ip3"]。


6、性能的检查

检查输入和输出的性能:

Logstash和其连接的服务运行速度一致,它可以和输入、输出的速度一样快。

检查系统参数:

1)CPU

  • 注意CPU是否过载。在Linux/Unix系统中可以使用top-H查看进程参数以及总计。
  • 如果CPU使用过高,直接跳到检查JVM堆的章节并检查Logstash worker设置。


2)Memory

  • 注意Logstash是运行在Java虚拟机中的,所以它只会用到你分配给它的最大内存。
  • 检查其他应用使用大量内存的情况,这将造成Logstash使用硬盘swap,这种情况会在应用占用内存超出物理内存范围时。


3)I/O监控磁盘I/O检查磁盘饱和度

  • 使用Logstash plugin(例如使用文件输出)磁盘会发生饱和。
  • 当发生大量错误,Logstash生成大量错误日志时磁盘也会发生饱和。
  • 在Linux中,可使用iostat,dstat或者其他命令监控磁盘I/O。


4)监控网络I/O

  • 当使用大量网络操作的input、output时,会导致网络饱和。
  • 在Linux中可使用dstat或iftop监控网络情况。


检查JVM heap:

  • heap设置太小会导致CPU使用率过高,这是因为JVM的垃圾回收机制导致的。
  • 一个快速检查该设置的方法是将heap设置为两倍大小然后检测性能改进。不要将heap设置超过物理内存大小,保留至少1G内存给操作系统和其他进程。
  • 你可以使用类似jmap命令行或VisualVM更加精确的计算JVM heap。

如有问题,欢迎留言 ~

相关推荐

当Frida来“敲”门(frida是什么)

0x1渗透测试瓶颈目前,碰到越来越多的大客户都会将核心资产业务集中在统一的APP上,或者对自己比较重要的APP,如自己的主业务,办公APP进行加壳,流量加密,投入了很多精力在移动端的防护上。而现在挖...

服务端性能测试实战3-性能测试脚本开发

前言在前面的两篇文章中,我们分别介绍了性能测试的理论知识以及性能测试计划制定,本篇文章将重点介绍性能测试脚本开发。脚本开发将分为两个阶段:阶段一:了解各个接口的入参、出参,使用Python代码模拟前端...

Springboot整合Apache Ftpserver拓展功能及业务讲解(三)

今日分享每天分享技术实战干货,技术在于积累和收藏,希望可以帮助到您,同时也希望获得您的支持和关注。架构开源地址:https://gitee.com/msxyspringboot整合Ftpserver参...

Linux和Windows下:Python Crypto模块安装方式区别

一、Linux环境下:fromCrypto.SignatureimportPKCS1_v1_5如果导包报错:ImportError:Nomodulenamed'Crypt...

Python 3 加密简介(python des加密解密)

Python3的标准库中是没多少用来解决加密的,不过却有用于处理哈希的库。在这里我们会对其进行一个简单的介绍,但重点会放在两个第三方的软件包:PyCrypto和cryptography上,我...

怎样从零开始编译一个魔兽世界开源服务端Windows

第二章:编译和安装我是艾西,上期我们讲述到编译一个魔兽世界开源服务端环境准备,那么今天跟大家聊聊怎么编译和安装我们直接进入正题(上一章没有看到的小伙伴可以点我主页查看)编译服务端:在D盘新建一个文件夹...

附1-Conda部署安装及基本使用(conda安装教程)

Windows环境安装安装介质下载下载地址:https://www.anaconda.com/products/individual安装Anaconda安装时,选择自定义安装,选择自定义安装路径:配置...

如何配置全世界最小的 MySQL 服务器

配置全世界最小的MySQL服务器——如何在一块IntelEdison为控制板上安装一个MySQL服务器。介绍在我最近的一篇博文中,物联网,消息以及MySQL,我展示了如果Partic...

如何使用Github Action来自动化编译PolarDB-PG数据库

随着PolarDB在国产数据库领域荣膺桂冠并持续获得广泛认可,越来越多的学生和技术爱好者开始关注并涉足这款由阿里巴巴集团倾力打造且性能卓越的关系型云原生数据库。有很多同学想要上手尝试,却卡在了编译数据...

面向NDK开发者的Android 7.0变更(ndk android.mk)

订阅Google官方微信公众号:谷歌开发者。与谷歌一起创造未来!受Android平台其他改进的影响,为了方便加载本机代码,AndroidM和N中的动态链接器对编写整洁且跨平台兼容的本机...

信创改造--人大金仓(Kingbase)数据库安装、备份恢复的问题纪要

问题一:在安装KingbaseES时,安装用户对于安装路径需有“读”、“写”、“执行”的权限。在Linux系统中,需要以非root用户执行安装程序,且该用户要有标准的home目录,您可...

OpenSSH 安全漏洞,修补操作一手掌握

1.漏洞概述近日,国家信息安全漏洞库(CNNVD)收到关于OpenSSH安全漏洞(CNNVD-202407-017、CVE-2024-6387)情况的报送。攻击者可以利用该漏洞在无需认证的情况下,通...

Linux:lsof命令详解(linux lsof命令详解)

介绍欢迎来到这篇博客。在这篇博客中,我们将学习Unix/Linux系统上的lsof命令行工具。命令行工具是您使用CLI(命令行界面)而不是GUI(图形用户界面)运行的程序或工具。lsoflsof代表&...

幻隐说固态第一期:固态硬盘接口类别

前排声明所有信息来源于网络收集,如有错误请评论区指出更正。废话不多说,目前固态硬盘接口按速度由慢到快分有这几类:SATA、mSATA、SATAExpress、PCI-E、m.2、u.2。下面我们来...

新品轰炸 影驰SSD多款产品登Computex

分享泡泡网SSD固态硬盘频道6月6日台北电脑展作为全球第二、亚洲最大的3C/IT产业链专业展,吸引了众多IT厂商和全球各地媒体的热烈关注,全球存储新势力—影驰,也积极参与其中,为广大玩家朋友带来了...