百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

「大数据面试宝典」 第一篇 Hadoop 面试题

bigegpt 2024-09-12 11:19 43 浏览

有时间,就把自己在找工作的时候准备的一些面试的内容拎出来在整理整理,万一有用呢?


Hadoop 常见的端口

? dfs.namenode.http-address:50070

? dfs.datanode.http-address:50075

? SecondaryNameNode辅助名称节点端口号:50090

? dfs.datanode.address:50010

? fs.defaultFS:8020 或者9000

? yarn.resourcemanager.webapp.address:8088

? 历史服务器web访问端口:19888

Hadoop 生态圈



  1. Flume: 一个高可用的,高可靠的,分布式的海量数据日志采集,聚合和传输的系统;
  2. Zookeeper: 是一个基于观察者模式设计的分布式服务管理框架,他负责存储和管理大家都关心的数据,然后接受管擦者的注册,一旦这些数据的状态发生了变化,Zookeeper就将负责通知已经在Zookeeper上注册的观察者做出相应的反应。

Hadoop配置文件以及简单的Hadoop集群搭建

(1)配置文件:

core-site.xml

<configuration>
        <!-- 指定HDFS中NameNode的地址 -->
        <property>
                <name>fs.defaultFS</name>
                 <value>hdfs://master:9000</value>
        </property>

        <!-- 指定Hadoop运行时产生文件的存储目录 -->
        <property>
                <name>hadoop.tmp.dir</name>
                <value>/opt/module/hadoop-2.7.2/data/tmp</value>
        </property>
        <!--配置 LZO -->
        <property>
           <name>io.compression.codecs</name>
           <value>
              org.apache.hadoop.io.compress.GzipCodec,
              org.apache.hadoop.io.compress.DefaultCodec,
              org.apache.hadoop.io.compress.BZip2Codec,
              org.apache.hadoop.io.compress.SnappyCodec,
              com.hadoop.compression.lzo.LzoCodec,
              com.hadoop.compression.lzo.LzopCodec
            </value>
        </property>

        <property>
            <name>io.compression.codec.lzo.class</name>
            <value>com.hadoop.compression.lzo.LzoCodec</value>
        </property>
        <!-- 设置压缩格式 -->
        <property>
            <name>io.compression.codecs</name>
            <value>org.apache.hadoop.io.compress.SnappyCodec</value>
        </property>
</configuration>

hdfs-site.xml

<configuration>

    <property>
        <name>dfs.replication</name>
        <value>3</value>
    </property>

      <property>
          <name>dfs.image.transfer.timeout</name>
          <value>3600000</value>
          <description>如果对于某一次数据操作来讲,延迟非常高,socket需要等待更长的时间,建议把该值设置为更大的值(默认60000毫秒),以确保socket不会被timeout掉。</description>
      </property>
        <!-- 指定Hadoop辅助名称节点主机配置 -->
    <property>
         <name>dfs.namenode.secondary.http-address</name>
         <value>slave02:50090</value>
    </property>
<!--  如果 HDFS 上有一个节点突然断了,就会出现数据无法写入的情况,设置这两个参数可以避免-->
    <property>
        <name>dfs.client.block.write.replace-datanode-on-failure.enable</name>
        <value>true</value>
    </property>
    <property>
        <name>dfs.client.block.write.replace-datanode-on-failure.policy</name>
        <value>NEVER</value>
    </property>
</configuration>

mapred-site.xml

<configuration>
    <!-- 指定 mr 运行 在 yarn 上-->
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <!-- 历史服务器端地址 -->
    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>slave01:10020</value>
    </property>
    <!-- 历史服务器web端地址 -->
    <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>slave01:19888</value>
    </property>
    <property>
        <name>mapreduce.map.output.compress</name>
        <value>true</value>
    </property>
    <!-- map 端输出的格式 -->
    <property>
        <name>mapreduce.map.output.compress.codec</name>
        <value>org.apache.hadoop.io.compress.SnappyCodec</value>
    </property>
</configuration>

yarn-site.xml

<configuration>
        <!-- Reducer获取数据的方式 -->
        <property>
            <name>yarn.nodemanager.aux-services</name>
            <value>mapreduce_shuffle</value>
        </property>
        <!-- 指定YARN的ResourceManager的地址 -->
        <property>
            <name>yarn.resourcemanager.hostname</name>
            <value>slave01</value>
        </property>
        <!-- 日志保留时间设置7天 -->
        <property>
            <name>yarn.log-aggregation.retain-seconds</name>
            <value>604800</value>
        </property>

        <property>
             <name>yarn.nodemanager.vmem-check-enabled</name>
             <value>false</value>
        </property>
</configuration>

hadoop-env.sh,yarn-env.sh,mapred-env.sh这三个文件,我们主要配置一下 JAVA_HOME 的路径。

slaves这个文件,我们用于配置 DataNode 的节点。

master

slave01

slave02

(2)简单的集群搭建过程:

1. JDK安装

1. 配置SSH免密登录

1. 配置hadoop核心文件

1. 格式化namenode

Hadoop参数调优

1)在hdfs-site.xml文件中配置多目录,最好提前配置好,否则更改目录需要重新启动集群.

2)NameNode有一个工作线程池,用来处理不同DataNode的并发心跳以及客户端并发的元数据操作. dfs.namenode.handler.count=20 * log2(Cluster Size),比如集群规模为10台时,此参数设置为60.

3)编辑日志存储路径dfs.namenode.edits.dir设置与镜像文件存储路径 dfs.namenode.name.dir 尽量分开,达到最低写入延迟

4)服务器节点上YARN可使用的物理内存总量,默认是8192(MB),注意,如果你的节点内存资源不够8GB,则需要调减小这个值,而YARN不会智能的探测节点的物理内存总量。yarn.nodemanager.resource.memory-mb

5)单个任务可申请的最多物理内存量,默认是8192(MB).yarn.scheduler.maximum-allocation-mb .

项目经验之基准测试

搭建完Hadoop集群后需要对HDFS读写性能和MR计算能力测试。测试jar包在hadoop的share文件夹下。

Hadoop宕机

1)如果MR造成系统宕机。此时要控制Yarn同时运行的任务数,和每个任务申请的最大内存。调整参数:yarn.scheduler.maximum-allocation-mb(单个任务可申请的最多物理内存量,默认是8192MB)

2)如果写入文件过量造成NameNode宕机。那么调高Kafka的存储大小,控制从Kafka到HDFS的写入速度。高峰期的时候用Kafka进行缓存,高峰期过去数据同步会自动跟上。

Hadoop 高可用配置

配置 HDFS-HA集群

1) 配置core-site.xml

<configuration>
<!-- 把两个NameNode)的地址组装成一个集群mycluster -->
            <property>
                  <name>fs.defaultFS</name>
              <value>hdfs://mycluster</value>
            </property>

            <!-- 指定hadoop运行时产生文件的存储目录 -->
            <property>
                  <name>hadoop.tmp.dir</name>
                  <value>/opt/ha/hadoop-2.7.2/data/tmp</value>
            </property>
</configuration>

2) 配置 hdfs-site.xml

<configuration>
    <!-- 完全分布式集群名称 -->
    <property>
        <name>dfs.nameservices</name>
        <value>mycluster</value>
    </property>

    <!-- 集群中NameNode节点都有哪些 -->
    <property>
        <name>dfs.ha.namenodes.mycluster</name>
        <value>nn1,nn2</value>
    </property>

    <!-- nn1的RPC通信地址 -->
    <property>
        <name>dfs.namenode.rpc-address.mycluster.nn1</name>
        <value>hadoop102:9000</value>
    </property>

    <!-- nn2的RPC通信地址 -->
    <property>
        <name>dfs.namenode.rpc-address.mycluster.nn2</name>
        <value>hadoop103:9000</value>
    </property>

    <!-- nn1的http通信地址 -->
    <property>
        <name>dfs.namenode.http-address.mycluster.nn1</name>
        <value>hadoop102:50070</value>
    </property>

    <!-- nn2的http通信地址 -->
    <property>
        <name>dfs.namenode.http-address.mycluster.nn2</name>
        <value>hadoop103:50070</value>
    </property>

    <!-- 指定NameNode元数据在JournalNode上的存放位置 -->
    <property>
        <name>dfs.namenode.shared.edits.dir</name>
    <value>qjournal://hadoop102:8485;hadoop103:8485;hadoop104:8485/mycluster</value>
    </property>

    <!-- 配置隔离机制,即同一时刻只能有一台服务器对外响应 -->
    <property>
        <name>dfs.ha.fencing.methods</name>
        <value>sshfence</value>
    </property>

    <!-- 使用隔离机制时需要ssh无秘钥登录-->
    <property>
        <name>dfs.ha.fencing.ssh.private-key-files</name>
        <value>/home/corp/.ssh/id_rsa</value>
    </property>

    <!-- 声明journalnode服务器存储目录-->
    <property>
        <name>dfs.journalnode.edits.dir</name>
        <value>/opt/hadoop-2.7.2/data/jn</value>
    </property>

    <!-- 关闭权限检查-->
    <property>
        <name>dfs.permissions.enable</name>
        <value>false</value>
    </property>

    <!-- 访问代理类:client,mycluster,active配置失败自动切换实现方式-->
    <property>
          <name>dfs.client.failover.proxy.provider.mycluster</name>
    <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>
</configuration>

再将我们的配置分发到各个节点上去。

配置HDFS-HA自动故障转移

(1)在hdfs-site.xml中增加

<property>
    <name>dfs.ha.automatic-failover.enabled</name>
    <value>true</value>
</property>

(2)在core-site.xml文件中增加

<property>
    <name>ha.zookeeper.quorum</name>
    <value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value>
</property>

1)关闭所有HDFS服务:

sbin/stop-dfs.sh

(2)启动Zookeeper集群:

bin/zkServer.sh start

(3)初始化HA在Zookeeper中状态:

bin/hdfs zkfc -formatZK

(4)启动HDFS服务:

sbin/start-dfs.sh

(5)在各个NameNode节点上启动DFSZK Failover Controller,先在哪台机器启动,哪个机器的NameNode就是Active NameNode

sbin/hadoop-daemin.sh start zkfc

配置Yarn-HA

Yarn-HA的工作机制:

配置 yarn-site.xml 文件

<configuration>

    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>

    <!--启用resourcemanager ha-->
    <property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
    </property>
    <!--声明两台resourcemanager的地址-->
    <property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>cluster-yarn1</value>
    </property>
    <property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>rm1,rm2</value>
    </property>
    <property>
        <name>yarn.resourcemanager.hostname.rm1</name>
        <value>hadoop102</value>
    </property>
    <property>
        <name>yarn.resourcemanager.hostname.rm2</name>
        <value>hadoop103</value>
    </property>
    <!--指定zookeeper集群的地址-->
    <property>
        <name>yarn.resourcemanager.zk-address</name>
        <value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value>
    </property>
    <!--启用自动恢复-->
    <property>
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
    </property>
    <!--指定resourcemanager的状态信息存储在zookeeper集群--> 
    <property>
        <name>yarn.resourcemanager.store.class</name>     <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>

</configuration>

启动HDFS(1)在各个JournalNode节点上,输入以下命令启动journalnode服务:

sbin/hadoop-daemon.sh start journalnode

(2)在[nn1]上,对其进行格式化,并启动:

bin/hdfs namenode -formatsbin/hadoop-daemon.sh start namenode

(3)在[nn2]上,同步nn1的元数据信息:

bin/hdfs namenode -bootstrapStandby

(4)启动[nn2]:

sbin/hadoop-daemon.sh start namenode

(5)启动所有DataNode

sbin/hadoop-daemons.sh start datanode

(6)将[nn1]切换为Active

bin/hdfs haadmin -transitionToActive nn1

启动YARN(1)在hadoop102中执行:

sbin/start-yarn.sh

(2)在hadoop103中执行:

sbin/yarn-daemon.sh start resourcemanager

(3)查看服务状态

bin/yarn rmadmin -getServiceState rm1

相关推荐

得物可观测平台架构升级:基于GreptimeDB的全新监控体系实践

一、摘要在前端可观测分析场景中,需要实时观测并处理多地、多环境的运行情况,以保障Web应用和移动端的可用性与性能。传统方案往往依赖代理Agent→消息队列→流计算引擎→OLAP存储...

warm-flow新春版:网关直连和流程图重构

本期主要解决了网关直连和流程图重构,可以自此之后可支持各种复杂的网关混合、多网关直连使用。-新增Ruoyi-Vue-Plus优秀开源集成案例更新日志[feat]导入、导出和保存等新增json格式支持...

扣子空间体验报告

在数字化时代,智能工具的应用正不断拓展到我们工作和生活的各个角落。从任务规划到项目执行,再到任务管理,作者深入探讨了这款工具在不同场景下的表现和潜力。通过具体的应用实例,文章展示了扣子空间如何帮助用户...

spider-flow:开源的可视化方式定义爬虫方案

spider-flow简介spider-flow是一个爬虫平台,以可视化推拽方式定义爬取流程,无需代码即可实现一个爬虫服务。spider-flow特性支持css选择器、正则提取支持JSON/XML格式...

solon-flow 你好世界!

solon-flow是一个基础级的流处理引擎(可用于业务规则、决策处理、计算编排、流程审批等......)。提供有“开放式”驱动定制支持,像jdbc有mysql或pgsql等驱动,可...

新一代开源爬虫平台:SpiderFlow

SpiderFlow:新一代爬虫平台,以图形化方式定义爬虫流程,不写代码即可完成爬虫。-精选真开源,释放新价值。概览Spider-Flow是一个开源的、面向所有用户的Web端爬虫构建平台,它使用Ja...

通过 SQL 训练机器学习模型的引擎

关注薪资待遇的同学应该知道,机器学习相关的岗位工资普遍偏高啊。同时随着各种通用机器学习框架的出现,机器学习的门槛也在逐渐降低,训练一个简单的机器学习模型变得不那么难。但是不得不承认对于一些数据相关的工...

鼠须管输入法rime for Mac

鼠须管输入法forMac是一款十分新颖的跨平台输入法软件,全名是中州韵输入法引擎,鼠须管输入法mac版不仅仅是一个输入法,而是一个输入法算法框架。Rime的基础架构十分精良,一套算法支持了拼音、...

Go语言 1.20 版本正式发布:新版详细介绍

Go1.20简介最新的Go版本1.20在Go1.19发布六个月后发布。它的大部分更改都在工具链、运行时和库的实现中。一如既往,该版本保持了Go1的兼容性承诺。我们期望几乎所...

iOS 10平台SpriteKit新特性之Tile Maps(上)

简介苹果公司在WWDC2016大会上向人们展示了一大批新的好东西。其中之一就是SpriteKitTileEditor。这款工具易于上手,而且看起来速度特别快。在本教程中,你将了解关于TileE...

程序员简历例句—范例Java、Python、C++模板

个人简介通用简介:有良好的代码风格,通过添加注释提高代码可读性,注重代码质量,研读过XXX,XXX等多个开源项目源码从而学习增强代码的健壮性与扩展性。具备良好的代码编程习惯及文档编写能力,参与多个高...

Telerik UI for iOS Q3 2015正式发布

近日,TelerikUIforiOS正式发布了Q32015。新版本新增对XCode7、Swift2.0和iOS9的支持,同时还新增了对数轴、不连续的日期时间轴等;改进TKDataPoin...

ios使用ijkplayer+nginx进行视频直播

上两节,我们讲到使用nginx和ngixn的rtmp模块搭建直播的服务器,接着我们讲解了在Android使用ijkplayer来作为我们的视频直播播放器,整个过程中,需要注意的就是ijlplayer编...

IOS技术分享|iOS快速生成开发文档(一)

前言对于开发人员而言,文档的作用不言而喻。文档不仅可以提高软件开发效率,还能便于以后的软件开发、使用和维护。本文主要讲述Objective-C快速生成开发文档工具appledoc。简介apple...

macOS下配置VS Code C++开发环境

本文介绍在苹果macOS操作系统下,配置VisualStudioCode的C/C++开发环境的过程,本环境使用Clang/LLVM编译器和调试器。一、前置条件本文默认前置条件是,您的开发设备已...