hive相关概念详解--架构、读写文件机制、数据存储
bigegpt 2024-10-12 06:09 7 浏览
一、架构及组件介绍
1、hive整体架构图
2、Hive组件
用户接口
包括 CLI、JDBC/ODBC、WebGUI。
CLI(command line interface)为shell命令行
Hive中的Thrift服务器允许外部客户端通过网络与Hive进行交互,类似于JDBC或ODBC协议
WebGUI是通过浏览器访问Hive
元数据存储
通常是存储在关系数据库如 mysql/derby中。Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。
Driver驱动程序
包括语法解析器、计划编译器、优化器、执行器
完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成
生成的查询计划存储在 HDFS 中,并在随后有执行引擎调用执行
执行引擎
Hive本身并不直接处理数据文件,是通过执行引擎处理
当下Hive支持MapReduce、Tez、Spark3种执行引擎
3、Hive数据模型(Data Model)
用来描述数据、组织数据和对数据进行操作
Hive的数据模型类似于RDBMS库表结构,此外还有自己特有模型
Hive中的数据可以在粒度级别上分为三类:Table 表、Partition分区、Bucket 分桶。
1)、Databases
Hive作为一个数据仓库,包含数据库(Schema),每个数据库下面有各自的表组成。默认数据库default。
Hive的数据都是存储在HDFS上的,默认有一个根目录,在hive-site.xml中,由参数hive.metastore.warehouse.dir指定。默认值为/user/hive/warehouse。
因此,Hive中的数据库在HDFS上的存储路径为:${hive.metastore.warehouse.dir}/databasename.db
比如,名为test的数据库存储路径为:/user/hive/warehouse/test.db
2)、Tables
Hive表与关系数据库中的表相同。Hive中的表所对应的数据是存储在Hadoop的文件系统中,而表相关的元数据是存储在RDBMS中。
在Hadoop中,数据通常保存在HDFS中,尽管它可以保存在任何Hadoop文件系统中,包括本地文件系统或S3。
Hive有两种类型的表:
Managed Table内部表、托管表
External Table外部表
创建表时,默是内部表。Hive中的表的数据在HDFS上的存储路径为:${hive.metastore.warehouse.dir}/databasename.db/tablename
比如,test的数据库下t_user表存储路径为:/user/hive/warehouse/test.db/t_user
3)、Partitions
Partition分区是hive的一种优化手段表。
分区是指根据分区列(例如“日期day”)的值将表划分为不同分区。这样可以更快地对指定分区数据进行查询。
分区在存储层面上的表现是table表目录下以子文件夹形式存在
一个文件夹表示一个分区。子文件命名标准:分区列=分区值
Hive还支持分区下继续创建分区,所谓的多重分区。
4)、Buckets
Bucket分桶表是hive的一种优化手段表。
分桶是指根据表中字段(例如“编号ID”)的值,经过hash计算规则将数据文件划分成指定的若干个小文件。
二、Hive读写文件机制
1、SerDe作用
SerDe是Serializer、Deserializer的简称,目的是用于序列化和反序列化。序列化是对象转化为字节码的过程;而反序列化是字节码转换为对象的过程。
Hive使用SerDe(和FileFormat)读取和写入行对象。
# 读过程
HDFS files --> InputFileFormat --> <key,value> --> Deserializer(反序列化) --> Row Object
# 写过程
Row Object --> serializer(反序列化) --> <key,value> --> OutputFileFormat --> HDFS files
# 需要注意的是,“key”部分在读取时会被忽略,而在写入时key始终是常数。基本上行对象存储在“value”中。
# 通过desc formatted tablename查看表的相关SerDe信息,SerDe默认(org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe)如下:
0: jdbc:hive2://server4:10000> desc formatted t_user;
INFO : Compiling command(queryId=alanchan_20221017153821_c8ac2142-aacf-479c-a8f2-e040f2f791cb): desc formatted t_user
INFO : Concurrency mode is disabled, not creating a lock manager
INFO : Semantic Analysis Completed (retrial = false)
INFO : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:col_name, type:string, comment:from deserializer), FieldSchema(name:data_type, type:string, comment:from deserializer), FieldSchema(name:comment, type:string, comment:from deserializer)], properties:null)
INFO : Completed compiling command(queryId=alanchan_20221017153821_c8ac2142-aacf-479c-a8f2-e040f2f791cb); Time taken: 0.024 seconds
INFO : Concurrency mode is disabled, not creating a lock manager
INFO : Executing command(queryId=alanchan_20221017153821_c8ac2142-aacf-479c-a8f2-e040f2f791cb): desc formatted t_user
INFO : Starting task [Stage-0:DDL] in serial mode
INFO : Completed executing command(queryId=alanchan_20221017153821_c8ac2142-aacf-479c-a8f2-e040f2f791cb); Time taken: 0.037 seconds
INFO : OK
INFO : Concurrency mode is disabled, not creating a lock manager
+-------------------------------+----------------------------------------------------+----------------------------------------------------+
| col_name | data_type | comment |
+-------------------------------+----------------------------------------------------+----------------------------------------------------+
| # col_name | data_type | comment |
| id | int | |
| name | varchar(255) | |
| age | int | |
| city | varchar(255) | |
| | NULL | NULL |
| # Detailed Table Information | NULL | NULL |
| Database: | test | NULL |
| OwnerType: | USER | NULL |
| Owner: | alanchan | NULL |
| CreateTime: | Mon Oct 17 14:47:08 CST 2022 | NULL |
| LastAccessTime: | UNKNOWN | NULL |
| Retention: | 0 | NULL |
| Location: | hdfs://HadoopHAcluster/user/hive/warehouse/test.db/t_user | NULL |
| Table Type: | MANAGED_TABLE | NULL |
| Table Parameters: | NULL | NULL |
| | COLUMN_STATS_ACCURATE | {\"BASIC_STATS\":\"true\",\"COLUMN_STATS\":{\"age\":\"true\",\"city\":\"true\",\"id\":\"true\",\"name\":\"true\"}} |
| | bucketing_version | 2 |
| | numFiles | 0 |
| | numRows | 0 |
| | rawDataSize | 0 |
| | totalSize | 0 |
| | transient_lastDdlTime | 1665989228 |
| | NULL | NULL |
| # Storage Information | NULL | NULL |
| SerDe Library: | org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe | NULL |
| InputFormat: | org.apache.hadoop.mapred.TextInputFormat | NULL |
| OutputFormat: | org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat | NULL |
| Compressed: | No | NULL |
| Num Buckets: | -1 | NULL |
| Bucket Columns: | [] | NULL |
| Sort Columns: | [] | NULL |
| Storage Desc Params: | NULL | NULL |
| | field.delim | , |
| | serialization.format | , |
+-------------------------------+----------------------------------------------------+----------------------------------------------------+
35 rows selected (0.081 seconds)
2、Hive读写文件流程
读过程
HDFS files --> InputFileFormat --> <key,value> --> Deserializer(反序列化) --> Row Object
Hive读取文件机制
首先调用InputFormat(默认TextInputFormat),返回一条一条kv键值对记录(默认是一行对应一条记录)。
然后调用SerDe(默认LazySimpleSerDe)的Deserializer,将一条记录中的value根据分隔符切分为各个字段。
写过程
Row Object --> serializer(反序列化) --> <key,value> --> OutputFileFormat --> HDFS files
Hive写文件机制
将Row写入文件时,首先调用SerDe(默认LazySimpleSerDe)的Serializer将对象转换成字节序列
然后调用OutputFormat将数据写入HDFS文件中。
3、SerDe相关语法
其中ROW FORMAT是语法关键字,DELIMITED和SERDE二选其一。
如果使用delimited表示使用默认的LazySimpleSerDe类来处理数据。如果数据文件格式比较特殊可以使用ROW FORMAT SERDE serde_name指定其他的Serde类来处理数据,甚至支持用户自定义SerDe类。
1)、LazySimpleSerDe分隔符指定
LazySimpleSerDe是Hive默认的序列化类,包含4种子语法,分别用于指定字段之间、集合元素之间、map映射 kv之间、换行的分隔符号。在建表的时候可以根据数据的特点灵活搭配使用。
2)、默认分隔符
hive建表时如果没有row format语法。此时字段之间默认的分割符是’\001’,是一种特殊的字符,使用的是ascii编码的值。
在vim编辑器中,连续按下Ctrl+v/Ctrl+a即可输入’\001’ ,显示^A
在一些文本编辑器中将以SOH的形式显示:
4、Hive数据存储路径
1)、默认存储路径
Hive表默认存储路径是由${HIVE_HOME}/conf/hive-site.xml配置文件的hive.metastore.warehouse.dir属性指定。默认值是:/user/hive/warehouse。
在该路径下,文件将根据所属的库、表,有规律的存储在对应的文件夹下。
2)、指定存储路径
在Hive建表的时候,可以通过location语法来更改数据在HDFS上的存储路径,使得建表加载数据更加灵活方便。
语法:LOCATION ‘<hdfs_location>’。
对于已经生成好的数据文件,使用location指定路径将会很方便。
以上,介绍了hive的整体架构、相关组件、数据模型等,同时也介绍 了hive的读写文件流程、机制等相关内容。
相关推荐
- Go语言泛型-泛型约束与实践(go1.7泛型)
-
来源:械说在Go语言中,Go泛型-泛型约束与实践部分主要探讨如何定义和使用泛型约束(Constraints),以及如何在实际开发中利用泛型进行更灵活的编程。以下是详细内容:一、什么是泛型约束?**泛型...
- golang总结(golang实战教程)
-
基础部分Go语言有哪些优势?1简单易学:语法简洁,减少了代码的冗余。高效并发:内置强大的goroutine和channel,使并发编程更加高效且易于管理。内存管理:拥有自动垃圾回收机制,减少内...
- Go 官宣:新版 Protobuf API(go pro版本)
-
原文作者:JoeTsai,DamienNeil和HerbieOng原文链接:https://blog.golang.org/a-new-go-api-for-protocol-buffer...
- Golang开发的一些注意事项(一)(golang入门项目)
-
1.channel关闭后读的问题当channel关闭之后再去读取它,虽然不会引发panic,但会直接得到零值,而且ok的值为false。packagemainimport"...
- golang 托盘菜单应用及打开系统默认浏览器
-
之前看到一个应用,用go语言编写,说是某某程序的windows图形化客户端,体验一下发现只是一个托盘,然后托盘菜单的控制面板功能直接打开本地浏览器访问程序启动的webserver网页完成gui相关功...
- golang标准库每日一库之 io/ioutil
-
一、核心函数概览函数作用描述替代方案(Go1.16+)ioutil.ReadFile(filename)一次性读取整个文件内容(返回[]byte)os.ReadFileioutil.WriteFi...
- 文件类型更改器——GoLang 中的 CLI 工具
-
我是如何为一项琐碎的工作任务创建一个简单的工具的,你也可以上周我开始玩GoLang,它是一种由Google制作的类C编译语言,非常轻量和快速,事实上它经常在Techempower的基准测...
- Go (Golang) 中的 Channels 简介(golang channel长度和容量)
-
这篇文章重点介绍Channels(通道)在Go中的工作方式,以及如何在代码中使用它们。在Go中,Channels是一种编程结构,它允许我们在代码的不同部分之间移动数据,通常来自不同的goro...
- Golang引入泛型:Go将Interface「」替换为“Any”
-
现在Go将拥有泛型:Go将Interface{}替换为“Any”,这是一个类型别名:typeany=interface{}这会引入了泛型作好准备,实际上,带有泛型的Go1.18Beta...
- 一文带你看懂Golang最新特性(golang2.0特性)
-
作者:腾讯PCG代码委员会经过十余年的迭代,Go语言逐渐成为云计算时代主流的编程语言。下到云计算基础设施,上到微服务,越来越多的流行产品使用Go语言编写。可见其影响力已经非常强大。一、Go语言发展历史...
- Go 每日一库之 java 转 go 遇到 Apollo?让 agollo 来平滑迁移
-
以下文章来源于GoOfficialBlog,作者GoOfficialBlogIntroductionagollo是Apollo的Golang客户端Apollo(阿波罗)是携程框架部门研...
- Golang使用grpc详解(golang gcc)
-
gRPC是Google开源的一种高性能、跨语言的远程过程调用(RPC)框架,它使用ProtocolBuffers作为序列化工具,支持多种编程语言,如C++,Java,Python,Go等。gR...
- Etcd服务注册与发现封装实现--golang
-
服务注册register.gopackageregisterimport("fmt""time"etcd3"github.com/cor...
- Golang:将日志以Json格式输出到Kafka
-
在上一篇文章中我实现了一个支持Debug、Info、Error等多个级别的日志库,并将日志写到了磁盘文件中,代码比较简单,适合练手。有兴趣的可以通过这个链接前往:https://github.com/...
- 如何从 PHP 过渡到 Golang?(php转golang)
-
我是PHP开发者,转Go两个月了吧,记录一下使用Golang怎么一步步开发新项目。本着有坑填坑,有错改错的宗旨,从零开始,开始学习。因为我司没有专门的Golang大牛,所以我也只能一步步自己去...
- 一周热门
- 最近发表
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- linuxlink (65)
- pythonwget (67)
- androidinclude (65)
- libcrypto.so (74)
- linux安装minio (74)
- ubuntuunzip (67)
- vscode使用技巧 (83)
- secure-file-priv (67)
- vue阻止冒泡 (67)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)