百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

Android OpenSL ES 音频采集与播放

bigegpt 2024-08-07 17:52 15 浏览

本篇详细介绍一下基于 Android OpenSL ES 实现音频的采集与播放。

1、OpenSL ES 是什么?

OpenSL ES 是一个针对嵌入式系统的开放硬件音频加速库,也可以将其视为一套针对嵌入式平台的音频标准,全称为: Open Sound Library for Embedded Systems ,它提供了一套高性能、 低延迟的音频功能实现方法,并且实现了软硬件音频性能的跨平台部署,大大降低了上层处理音频应用的开发难度。

在 Android 开发中,Google 官方从 Android 2.3 (API 9)开始,便支持了 OpenSL ES 标准 ,并且对其进行了扩展。本文介绍的 OpenSL ES 是针对 Android NDK 开发来说。

2、OpenSL ES 的一些基本概念

2.1 基于 c 语言的面向对象接口

OpenSL ES 是基于 c 语言实现的,但其提供的接口是采用面向对象的方式实现,OpenSL ES 的大多数 API 是通过对象来调用的。例如,以下代码片段,主要的逻辑是实例化引擎对象和获取引擎对象接口。

SLresult result;

// realize the engine
result = (*engineObject)->Realize(engineObject, SL_BOOLEAN_FALSE);
assert(SL_RESULT_SUCCESS == result);
(void)result;

result = (*engineObject)->GetInterface(engineObject, SL_IID_ENGINE, &engineEngine);
assert(SL_RESULT_SUCCESS == result);
(void)result;

2.2 对象和接口概念

Object 和 Interface OpenSL ES 中的两大基本概念,可以类比为 Java 中的对象和接口

在 OpenSL ES 中, 每个 Object 可以存在一系列的 Interface ,并且为每个对象都提供了一系列的基本操作,如 Realize,GetState,Destroy 等。重要的一点,只有通过 GetInterface 方法拿到 Object 的 Interface ,才能使用 Object 提供的功能。

2.3 对象的生命周期

OpenSL ES 的 Object 一般有三种状态,分别是:UNREALIZED (不可用),REALIZED(可用),SUSPENDED(挂起)。

Object 处于 UNREALIZED (不可用)状态时,系统不会为其分配资源;调用 Realize 方法后便进入 REALIZED(可用)状态,此时对象的各个功能和资源可以正常访问;当系统音频相关的硬件设备被其他进程占用时,OpenSL ES Object 便会进入 SUSPENDED (挂起)状态,随后调用 Resume 方法可使对象重回 REALIZED(可用)状态;当 Object 使用结束后,调用 Destroy 方法释放资源,是对象重回 UNREALIZED (不可用)状态。

3、 OpenSL ES 常用的 Object 和 Interface

3.1 Audio 引擎对象和接口

Audio 引擎对象和接口,即 Engine Object 和 SLEngineItf Interface 。Engine Object 的主要功能是管理 Audio Engine 的生命周期,提供引擎对象的管理接口。引擎对象的使用方法如下:

SLresult result;
// 创建引擎对象
result = slCreateEngine(&engineObject, 0, NULL, 0, NULL, NULL);
assert(SL_RESULT_SUCCESS == result);
(void)result;

// 实例化
result = (*engineObject)->Realize(engineObject, SL_BOOLEAN_FALSE);
assert(SL_RESULT_SUCCESS == result);
(void)result;

// 获取引擎对象接口
result = (*engineObject)->GetInterface(engineObject, SL_IID_ENGINE, &engineEngine);
assert(SL_RESULT_SUCCESS == result);
(void)result;

// 释放引擎对象的资源
result = (*engineObject)->Destroy(engineObject, SL_BOOLEAN_FALSE);
assert(SL_RESULT_SUCCESS == result);
(void)result;

3.2 SLRecordItf 和 SLPlayItf

SLRecordItf 和 SLPlayItf 分别抽象多媒体功能 recorder 和 player ,通过 SLEngineItf 的 CreateAudioPlayer 和 CreateAudioRecorder 方法分别创建 player 和 recorder 对象实例。

// 创建 audio recorder 对象
result = (*engineEngine)->CreateAudioRecorder(engineEngine, &recorderObject , &recSource, &dataSink,
                                                  NUM_RECORDER_EXPLICIT_INTERFACES, iids, required);

// 创建 audio player 对象
SLresult result = (*engineEngine)->CreateAudioPlayer(
        engineEngine,
        &audioPlayerObject,
        &dataSource,
        &dataSink,
        1,
        interfaceIDs,
        requiredInterfaces
);

3.3 SLDataSource 和 SLDataSink

OpenSL ES 中的 SLDataSource 和 SLDataSink 结构体,主要用于构建 audio player 和 recorder 对象,其中 SLDataSource 表示音频数据来源的信息,SLDataSink 表示音频数据输出信息。

// 数据源简单缓冲队列定位器
SLDataLocator_AndroidSimpleBufferQueue dataSou
        SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEU
        1
};
// PCM 数据源格式
SLDataFormat_PCM dataSourceFormat = {
        SL_DATAFORMAT_PCM, // 格式类型
        wav_get_channels(wav), // 通道数
        wav_get_rate(wav) * 1000, //采样率
        wav_get_bits(wav), // 位宽
        wav_get_bits(wav),
        SL_SPEAKER_FRONT_CENTER, // 通道屏蔽
        SL_BYTEORDER_LITTLEENDIAN // 字节顺序
};


// 数据源
SLDataSource dataSource = {
        &dataSourceLocator,
        &dataSourceFormat
};
// 针对数据接收器的输出混合定位器(混音器)
SLDataLocator_OutputMix dataSinkLocator = {
        SL_DATALOCATOR_OUTPUTMIX, // 定位器类型
        outputMixObject // 输出混合
};
// 输出
SLDataSink dataSink = {
        &dataSinkLocator, // 定位器
        0,
};

C++音视频学习资料免费获取方法:关注音视频开发T哥,点击「链接」即可免费获取2023年最新C++音视频开发进阶独家免费学习大礼包!

4、OpenSL ES Recorder 和 Player 功能构建

Audio Recorder

Audio Player

PS:Audio Player 的 Data Source 也可以是本地存储或缓存的音频数据,以上图片来自于 Jhuster 的博客。

5、代码实现

以下代码主要实现音频数据的采集、保存和播放。

#include <jni.h>
#include <string>
#include <assert.h>
#include <SLES/OpenSLES.h>
#include <SLES/OpenSLES_Android.h>
#include <android/log.h>

#define AUDIO_SRC_PATH "/sdcard/audio.pcm"

#define LOGI(FORMAT, ...) __android_log_print(ANDROID_LOG_INFO,"byteflow",FORMAT,##__VA_ARGS__);
#define LOGE(FORMAT, ...) __android_log_print(ANDROID_LOG_ERROR,"byteflow",FORMAT,##__VA_ARGS__);

#define NUM_RECORDER_EXPLICIT_INTERFACES 2
#define NUM_BUFFER_QUEUE 1
#define SAMPLE_RATE 44100
#define PERIOD_TIME 20  // 20ms
#define FRAME_SIZE SAMPLE_RATE * PERIOD_TIME / 1000
#define CHANNELS 2
#define BUFFER_SIZE   (FRAME_SIZE * CHANNELS)

// engine interfaces
static SLObjectItf engineObject = NULL;
static SLEngineItf engineEngine = NULL;

// audio recorder interfaces
static SLObjectItf recorderObject = NULL;
static SLRecordItf recorderRecord = NULL;
static SLAndroidSimpleBufferQueueItf recorderBuffQueueItf = NULL;
static SLAndroidConfigurationItf configItf = NULL;

// pcm audio player interfaces
static SLObjectItf playerObject = NULL;
static SLPlayItf playerPlay = NULL;
static SLObjectItf outputMixObjext = NULL; // 混音器
static SLAndroidSimpleBufferQueueItf playerBufferQueueItf = NULL;

void createEngine(){
    SLEngineOption EngineOption[] = {
            {(SLuint32) SL_ENGINEOPTION_THREADSAFE, (SLuint32) SL_BOOLEAN_TRUE}
    };
    SLresult result;
    result = slCreateEngine(&engineObject, 1, EngineOption, 0, NULL, NULL);
    assert(SL_RESULT_SUCCESS == result);

    /* Realizing the SL Engine in synchronous mode. */
    result = (*engineObject)->Realize(engineObject, SL_BOOLEAN_FALSE);
    assert(SL_RESULT_SUCCESS == result);

    // get the engine interface, which is needed in order to create other objects
    result = (*engineObject)->GetInterface(engineObject, SL_IID_ENGINE, &engineEngine);
    assert(SL_RESULT_SUCCESS == result);
}

class AudioContext {
public:
    FILE *pfile;
    uint8_t *buffer;
    size_t bufferSize;

    AudioContext(FILE *pfile, uint8_t *buffer, size_t bufferSize){
        this->pfile = pfile;
        this->buffer = buffer;
        this->bufferSize = bufferSize;
    }
};

static AudioContext *recorderContext = NULL;

// 录制音频时的回调
void AudioRecorderCallback(SLAndroidSimpleBufferQueueItf bufferQueueItf, void *context){
    AudioContext *recorderContext = (AudioContext*)context;
    assert(recorderContext != NULL);
    if (recorderContext->buffer != NULL) {
        fwrite(recorderContext->buffer, recorderContext->bufferSize, 1, recorderContext->pfile);
        LOGI("save a frame audio data.");
        SLresult result;
        SLuint32 state;
        result = (*recorderRecord)->GetRecordState(recorderRecord, &state);
        assert(SL_RESULT_SUCCESS == result);
        (void) result;

        if (state == SL_RECORDSTATE_RECORDING) {
            result = (*bufferQueueItf)->Enqueue(bufferQueueItf, recorderContext->buffer, recorderContext->bufferSize);
            assert(SL_RESULT_SUCCESS == result);
            (void) result;
        }
    }

}

// 播放音频时的回调
void AudioPlayerCallback(SLAndroidSimpleBufferQueueItf bufferQueueItf, void *context){
    AudioContext *playerContext = (AudioContext*)context;
    if (!feof(playerContext->pfile)) {
        fread(playerContext->buffer, playerContext->bufferSize, 1, playerContext->pfile);
        LOGI("read a frame audio data.");
        (*bufferQueueItf)->Enqueue(bufferQueueItf, playerContext->buffer, playerContext->bufferSize);
    } else {
        fclose(playerContext->pfile);
        delete playerContext->buffer;
    }
}

// 创建音频播放器
void createAudioPlayer(SLEngineItf engineEngine, SLObjectItf outputMixObject, SLObjectItf &audioPlayerObject){
    SLDataLocator_AndroidSimpleBufferQueue dataSourceLocator = {
            SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE,
            1
    };

    // PCM 数据源格式
    SLDataFormat_PCM dataSourceFormat = {
            SL_DATAFORMAT_PCM,
            2,
            SL_SAMPLINGRATE_44_1,
            SL_PCMSAMPLEFORMAT_FIXED_16,
            16,
            SL_SPEAKER_FRONT_LEFT| SL_SPEAKER_FRONT_RIGHT,
            SL_BYTEORDER_LITTLEENDIAN
    };

    SLDataSource dataSource = {
            &dataSourceLocator,
            &dataSourceFormat
    };

    SLDataLocator_OutputMix dataSinkLocator = {
            SL_DATALOCATOR_OUTPUTMIX, // 定位器类型
            outputMixObject // 输出混合
    };

    SLDataSink dataSink = {
            &dataSinkLocator, // 定位器
            0,
    };

    // 需要的接口
    SLInterfaceID interfaceIDs[] = {
            SL_IID_BUFFERQUEUE
    };
    SLboolean requiredInterfaces[] = {
            SL_BOOLEAN_TRUE
    };

    // 创建音频播放对象
    SLresult result = (*engineEngine)->CreateAudioPlayer(
            engineEngine,
            &audioPlayerObject,
            &dataSource,
            &dataSink,
            1,
            interfaceIDs,
            requiredInterfaces
    );
    assert(SL_RESULT_SUCCESS == result);
    (void) result;

}

extern "C" {

// 开始播放音频
JNIEXPORT void JNICALL
Java_com_byteflow_opensl_1es_AudioRecorder_startPlay(JNIEnv *env, jobject instance) {
    // 创建引擎
    if (engineEngine == NULL) {
        createEngine();
    }

    // 创建混音器
    SLresult result;
    result = (*engineEngine)->CreateOutputMix(engineEngine, &outputMixObjext, 0, 0, 0);
    assert(SL_RESULT_SUCCESS == result);
    (void) result;

    result = (*outputMixObjext)->Realize(outputMixObjext, SL_BOOLEAN_FALSE);
    assert(SL_RESULT_SUCCESS == result);
    (void) result;

    FILE *p_file = fopen(AUDIO_SRC_PATH, "r");

    // 创建播放器
    createAudioPlayer(engineEngine, outputMixObjext, playerObject);

    result = (*playerObject)->Realize(playerObject, SL_BOOLEAN_FALSE);
    assert(SL_RESULT_SUCCESS == result);
    (void) result;

    result = (*playerObject)->GetInterface(playerObject, SL_IID_BUFFERQUEUE,
                                                &playerBufferQueueItf);
    assert(SL_RESULT_SUCCESS == result);
    (void) result;

    uint8_t *buffer = new uint8_t[BUFFER_SIZE];
    AudioContext *playerContext = new AudioContext(p_file, buffer, BUFFER_SIZE);
    result = (*playerBufferQueueItf)->RegisterCallback(playerBufferQueueItf, AudioPlayerCallback,
                                                    playerContext);
    assert(SL_RESULT_SUCCESS == result);
    (void) result;

    result = (*playerObject)->GetInterface(playerObject, SL_IID_PLAY, &playerPlay);
    assert(SL_RESULT_SUCCESS == result);
    (void) result;

    result = (*playerPlay)->SetPlayState(playerPlay, SL_PLAYSTATE_PLAYING);
    assert(SL_RESULT_SUCCESS == result);

    AudioPlayerCallback(playerBufferQueueItf, playerContext);

}

// 停止播放音频
JNIEXPORT void JNICALL
Java_com_byteflow_opensl_1es_AudioRecorder_stopPlay(JNIEnv *env, jobject instance) {
    if (playerPlay != NULL) {
        SLresult result;
        result = (*playerPlay)->SetPlayState(playerPlay, SL_PLAYSTATE_STOPPED);
        assert(SL_RESULT_SUCCESS == result);
    }
}

// 开始采集音频数据,并保存到本地
JNIEXPORT void JNICALL
Java_com_byteflow_opensl_1es_AudioRecorder_startRecord(JNIEnv *env, jobject instance) {

    if (engineEngine == NULL) {
        createEngine();
    }

    if (recorderObject != NULL) {
        LOGI("Audio recorder already has been created.");
        return ;
    }

    FILE *p_file = fopen(AUDIO_SRC_PATH, "w");

    if (p_file == NULL) {
        LOGI("Fail to open file.");
        return ;
    }

    SLresult result;

    /* setup the data source*/
    SLDataLocator_IODevice ioDevice = {
            SL_DATALOCATOR_IODEVICE,
            SL_IODEVICE_AUDIOINPUT,
            SL_DEFAULTDEVICEID_AUDIOINPUT,
            NULL
    };

    SLDataSource recSource = {&ioDevice, NULL};

    SLDataLocator_AndroidSimpleBufferQueue recBufferQueue = {
            SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE,
            NUM_BUFFER_QUEUE
    };

    SLDataFormat_PCM pcm = {
            SL_DATAFORMAT_PCM, // pcm 格式的数据
            2,  // 2 个声道(立体声)
            SL_SAMPLINGRATE_44_1, // 44100hz 的采样频率
            SL_PCMSAMPLEFORMAT_FIXED_16,
            SL_PCMSAMPLEFORMAT_FIXED_16,
            SL_SPEAKER_FRONT_LEFT| SL_SPEAKER_FRONT_RIGHT,
            SL_BYTEORDER_LITTLEENDIAN
    };

    SLDataSink dataSink = { &recBufferQueue, &pcm };
    SLInterfaceID iids[NUM_RECORDER_EXPLICIT_INTERFACES] = {SL_IID_ANDROIDSIMPLEBUFFERQUEUE, SL_IID_ANDROIDCONFIGURATION};
    SLboolean required[NUM_RECORDER_EXPLICIT_INTERFACES] = {SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE};

    /* Create the audio recorder */
    result = (*engineEngine)->CreateAudioRecorder(engineEngine, &recorderObject , &recSource, &dataSink,
                                                  NUM_RECORDER_EXPLICIT_INTERFACES, iids, required);
    assert(SL_RESULT_SUCCESS == result);


    /* get the android configuration interface*/
    result = (*recorderObject)->GetInterface(recorderObject, SL_IID_ANDROIDCONFIGURATION, &configItf);
    assert(SL_RESULT_SUCCESS == result);

    /* Realize the recorder in synchronous mode. */
    result = (*recorderObject)->Realize(recorderObject, SL_BOOLEAN_FALSE);
    assert(SL_RESULT_SUCCESS == result);

    /* Get the buffer queue interface which was explicitly requested */
    result = (*recorderObject)->GetInterface(recorderObject, SL_IID_ANDROIDSIMPLEBUFFERQUEUE, (void*) &recorderBuffQueueItf);
    assert(SL_RESULT_SUCCESS == result);


    /* get the record interface */
    result = (*recorderObject)->GetInterface(recorderObject, SL_IID_RECORD, &recorderRecord);
    assert(SL_RESULT_SUCCESS == result);

    uint8_t *buffer = new uint8_t[BUFFER_SIZE];
    recorderContext = new AudioContext(p_file, buffer, BUFFER_SIZE);
    result = (*recorderBuffQueueItf)->RegisterCallback(recorderBuffQueueItf, AudioRecorderCallback, recorderContext);
    assert(SL_RESULT_SUCCESS == result);

    /* Enqueue buffers to map the region of memory allocated to store the recorded data */
    result = (*recorderBuffQueueItf)->Enqueue(recorderBuffQueueItf, recorderContext->buffer, BUFFER_SIZE);
    assert(SL_RESULT_SUCCESS == result);

    /* Start recording */
    // 开始录制音频
    result = (*recorderRecord)->SetRecordState(recorderRecord, SL_RECORDSTATE_RECORDING);
    assert(SL_RESULT_SUCCESS == result);
    LOGI("Starting recording");

}

// 停止音频采集
JNIEXPORT void JNICALL
Java_com_byteflow_opensl_1es_AudioRecorder_stopRecord(JNIEnv *env, jobject instance) {
    if (recorderRecord != NULL) {
        SLresult result = (*recorderRecord)->SetRecordState(recorderRecord, SL_RECORDSTATE_STOPPED);
        assert(SL_RESULT_SUCCESS == result);

        if (recorderContext != NULL) {
            fclose(recorderContext->pfile);
            delete recorderContext->buffer;
        }
    }
}

// 释放资源
JNIEXPORT void JNICALL
Java_com_byteflow_opensl_1es_AudioRecorder_release(JNIEnv *env, jobject instance) {
    if (recorderObject != NULL) {
        (*recorderObject)->Destroy(recorderObject);
        recorderObject = NULL;
        recorderRecord = NULL;
        recorderBuffQueueItf = NULL;
        configItf = NULL;
        recorderContext = NULL;
    }

    if (playerObject != NULL) {
        (*playerObject)->Destroy(playerObject);
        playerObject = NULL;
        playerPlay = NULL;
        playerBufferQueueItf = NULL;
        outputMixObjext = NULL;
    }

    // destroy engine object, and invalidate all associated interfaces
    if (engineObject != NULL) {
        (*engineObject)->Destroy(engineObject);
        engineObject = NULL;
        engineEngine = NULL;
    }
}
};

CMake 脚本 CMakeLists.txt 。

cmake_minimum_required(VERSION 3.4.1)

add_library( # Sets the name of the library.
             audio-recorder

             # Sets the library as a shared library.
             SHARED

             # Provides a relative path to your source file(s).
             src/main/cpp/audio-recorder.cpp)

target_link_libraries(audio-recorder
                      android
                      log
                      OpenSLES)


原文链接:Android OpenSL ES 音频采集与播放

相关推荐

方差分析简介(方差分析通俗理解)

介绍方差分析(ANOVA,AnalysisofVariance)是一种广泛使用的统计方法,用于比较两个或多个组之间的均值。单因素方差分析是方差分析的一种变体,旨在检测三个或更多分类组的均值是否存在...

正如404页面所预示,猴子正成为断网元凶--吧嗒吧嗒真好吃

吧嗒吧嗒,绘图:MakiNaro你可以通过加热、冰冻、水淹、模塑、甚至压溃压力来使网络光缆硬化。但用猴子显然是不行的。光缆那新挤压成型的塑料外皮太尼玛诱人了,无法阻挡一场试吃盛宴的举行。印度政府正...

Python数据可视化:箱线图多种库画法

概念箱线图通过数据的四分位数来展示数据的分布情况。例如:数据的中心位置,数据间的离散程度,是否有异常值等。把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)...

多组独立(完全随机设计)样本秩和检验的SPSS操作教程及结果解读

作者/风仕在上一期,我们已经讲完了两组独立样本秩和检验的SPSS操作教程及结果解读,这期开始讲多组独立样本秩和检验,我们主要从多组独立样本秩和检验介绍、两组独立样本秩和检验使用条件及案例的SPSS操作...

方差分析 in R语言 and Excel(方差分析r语言例题)

今天来写一篇实际中比较实用的分析方法,方差分析。通过方差分析,我们可以确定组别之间的差异是否超出了由于随机因素引起的差异范围。方差分析分为单因素方差分析和多因素方差分析,这一篇先介绍一下单因素方差分析...

可视化:前端数据可视化插件大盘点 图表/图谱/地图/关系图

前端数据可视化插件大盘点图表/图谱/地图/关系图全有在大数据时代,很多时候我们需要在网页中显示数据统计报表,从而能很直观地了解数据的走向,开发人员很多时候需要使用图表来表现一些数据。随着Web技术的...

matplotlib 必知的 15 个图(matplotlib各种图)

施工专题,我已完成20篇,施工系列几乎覆盖Python完整技术栈,目标只总结实践中最实用的东西,直击问题本质,快速帮助读者们入门和进阶:1我的施工计划2数字专题3字符串专题4列表专题5流程控制专题6编...

R ggplot2常用图表绘制指南(ggplot2绘制折线图)

ggplot2是R语言中强大的数据可视化包,基于“图形语法”(GrammarofGraphics),通过分层方式构建图表。以下是常用图表命令的详细指南,涵盖基本语法、常见图表类型及示例,适合...

Python数据可视化:从Pandas基础到Seaborn高级应用

数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。Pandas内置绘图功能Pandas基于Matplotlib提供了简洁的绘...

Python 数据可视化常用命令备忘录

本文提供了一个全面的Python数据可视化备忘单,适用于探索性数据分析(EDA)。该备忘单涵盖了单变量分析、双变量分析、多变量分析、时间序列分析、文本数据分析、可视化定制以及保存与显示等内容。所...

统计图的种类(统计图的种类及特点图片)

统计图是利用几何图形或具体事物的形象和地图等形式来表现社会经济现象数量特征和数量关系的图形。以下是几种常见的统计图类型及其适用场景:1.条形图(BarChart)条形图是用矩形条的高度或长度来表示...

实测,大模型谁更懂数据可视化?(数据可视化和可视化分析的主要模型)

大家好,我是Ai学习的老章看论文时,经常看到漂亮的图表,很多不知道是用什么工具绘制的,或者很想复刻类似图表。实测,大模型LaTeX公式识别,出乎预料前文,我用Kimi、Qwen-3-235B...

通过AI提示词让Deepseek快速生成各种类型的图表制作

在数据分析和可视化领域,图表是传达信息的重要工具。然而,传统图表制作往往需要专业的软件和一定的技术知识。本文将介绍如何通过AI提示词,利用Deepseek快速生成各种类型的图表,包括柱状图、折线图、饼...

数据可视化:解析箱线图(box plot)

箱线图/盒须图(boxplot)是数据分布的图形表示,由五个摘要组成:最小值、第一四分位数(25th百分位数)、中位数、第三四分位数(75th百分位数)和最大值。箱子代表四分位距(IQR)。IQR是...

[seaborn] seaborn学习笔记1-箱形图Boxplot

1箱形图Boxplot(代码下载)Boxplot可能是最常见的图形类型之一。它能够很好表示数据中的分布规律。箱型图方框的末尾显示了上下四分位数。极线显示最高和最低值,不包括异常值。seaborn中...