百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

基于FOA优化GRNN的船舶交通流预测模型

bigegpt 2025-02-16 19:56 8 浏览

钮浩东,黄洪琼

(上海海事大学 信息工程学院,上海 201306)

:针对船舶交通流预测中存在复杂性、非线性、受限因素多等特点,运用果蝇优化算法,建立了优化的广义回归神经网络船舶交通流预测模型。通过利用果蝇优化算法的全局寻优特性对广义回归神经网络进行参数优化,从而实现对船舶交通流的预测。以东海大桥的船舶流量观测数据为实例对象进行分析,通过MATLAB进行仿真预测,实验结果表明:FOA-GRNN模型相比于传统的GRNN模型和BPNN模型具有更高的预测精度和泛化能力,有效地解决了预测过程中数据样本少、非线性拟合能力差等问题,对水路的规划、通航管理等方面具有一定的应用价值。

:船舶流量;果蝇算法;参数优化;预测;广义回归神经网络

随着经济的发展和国际贸易的不断增长,海上船舶数量显著增加,中国沿海地区和长江流域的船舶交通量也日益多元化。因此,精准地预测相关水域的船舶交通流量也日趋重要,其不仅能为航道的规划、设计、管理提供有力依据,还能提高通航效率,降低海上交通事故发生率。影响船舶交通流量预测的因素有很多,涉及政治、经济、人为等多方面的因素。目前国内外学者提出的预测方法有支持向量机[1]、组合预测[2]、回归分析[3]等,然而这些单一的预测方法难以满足在预测精度方面的预期要求。

为了克服传统预测方法存在的预测精度不高、非线性拟合能力不强、计算复杂等方面的不足,本文建立了一种新的船舶流量预测模型,即FO-GRNN模型,首次把果蝇算法(FOA)优化的广义回归神经网络(GRNN)运用到船舶交通流量预测中来。果蝇算法是根据果蝇寻找食物的活动演变而来的新兴算法,具有良好的全局寻优能力;另外广义回归神经网络的特点是具备优秀的局部逼近能力、较快的训练速度、处理非线性问题的优势明显。因此将两者有效地结合起来,通过利用FOA优化GRNN的相关参数来构建最优的预测模型,实现了预测船舶交通流量的目的。

斯坦福大学博士唐纳德·施佩希特于20世纪90年代初提出广义回归神经网络模型,其属于径向基(RBF)神经网络的一部分,相比于RBF网络,GRNN具有较强的局部逼近能力以及较快的学习速度[4]。另外,在样本数据较少的情况下,广义回归神经网络的预测结果也较优,其网络结构如图1所示。此网络由3个部分组成,分别为输入层、径向基层以及线性网络层。

网络的第一层为信号输入层,输入向量经输入层传送至隐含层,其中隐含层包含Q个神经元,传递函数一般用高斯函数R=exp-x-c2σ2表示,式中σ称为平滑因子。输出层是一个特定的线性层,该层包含与隐含层数目相同的神经元,并且使用归一化点积权函数作为该层的权值函数,利用线性函数a2=purelin(n2)表示输出层的节点函数,从而计算出网络的输出值。

2FOA-GRNN预测模型的构建

果蝇优化算法是根据果蝇寻找食物的活动演变而来的一种全局寻优的新兴算法,在操作性、实用性和收敛速度等方面具有明显优势。

因为GRNN的性能受到σ取值的影响,所以本文使用果蝇算法来优化Spread值,主要思想就是通过果蝇嗅觉搜寻食物及视觉发现群体所在位置,从而使得Spread值取到最优解,然后使用迭代寻优的方法,将GRNN网络的预测值与真实值的均方差降至最低,记录这一时刻的味道浓度值,此值即为σ的最优解。图2为FOA-GRNN模型的流程图[5],学习步骤如下。

(1)参数初始化,如果蝇的种群规模、迭代次数和初始位置。

(2)随机规定单个果蝇发现食物的所在位置和间隔距离。

(3)因为不清楚食物的具体位置,所以必须先求出所有果蝇相距原点的长度,然后求出味道浓度判定值S。

(4)建立味道浓度判定函数,把计算得到的S值代入到函数中,从而得到果蝇所在方位的味道浓度值。浓度判定函数选取GRNN模型里的均方差表示。

(5)求解果蝇群体中味道浓度的极值,即求均方差的极小值。

(6)记录最优味道浓度值和此时相应的果蝇位置。

(7)开始迭代寻优,循环执行步骤(2)~(5),假如味道浓度优于前一代,则进行步骤(6)。

(8)判断迭代次数条件是否满足,若满足则得到Spread最优解,并将其带入最优的GRNN模型进行仿真预测,否则返回步骤(2)继续执行。

3实例仿真与分析

3.1实验数据及参数设置

以上海洋山港东海大桥观测面经过的船舶为研究对象,根据上海洋山港统计的数据,选取2015年4月15日至2015年7月5日的船舶流量数据作为预测的原始数据。前50天数据作为训练数据,后32天数据作为测试数据。选取上海GDP指数、运输成本、业务量指数、船舶平均吨位、天气情况5个指标作为主要影响因素来建立预测模型。为了减小预测误差,实现多类别样本的统一分析,确保数据保持在同一数量上,故在实验前先对数据进行归一化处理,公式如下所示[6]:

仿真试验时,选取MATLAB神经网络工具箱中的newgrnn函数来得到Spread最优值,构建最佳的FOA-GRNN船舶流量预测模型。通过反复验算设定FOA的参数如下:初始化果蝇群体位置区间为[0,100],果蝇群体规模为30,迭代次数为200。经过FOA优化后,得到最优的Spread值为0.002 2。

3.2仿真结果对比分析

为了对实验结果进行对比分析,本文分别计算了3种算法的MAD、MAPE、RMS。设xt为实际流量值,t为预测值,n为预测序列总数,其相应公式依次为[7]:

将这3种预测模型进行性能指标对照,其比较结果如表1所示。此外,为了凸显本文优化方法的优越性,分别对BP神经网络模型、GRNN模型和FOAGRNN模型进行表13种预测模型性能指标对比BPGRNNFOAGRNNMAD37.156 327.281 315.062 5MAPE0.045 60.033 30.018 3RMS43.664 631.487 617.505 4仿真实验及比较,仿真结果如图3~图5所示。

由图3~图5及表1可知,虽然BP网络模型和单一的GRNN网络模型都得到了相应的预测结果,但是在预测精度上还是不及FOAGRNN模型。由于BP神经网络需要大量的训练样本,有时样本数条件无法达到要求,此外由于神经网络中的过拟合现象和GRNN中Spread值的选择问题,使得这两种算法的预测精度没有达到预期的要求。FOA具有较强的全局寻优能力,利用FOA优化GRNN模型的Spread值,得到其最优解,使得预测误差达到最小。

由表1可知,应用FOAGRNN模型预测的MAD、MAPE、RMS值都比单一的GRNN模型和BP模型小,由此说明,相对于BP和GRNN网络,FOAGRNN网络模型的预测误差较小并且具有较高的稳定性,FOAGRNN模型在预测能力、逼近能力等方面皆具有较强的优势。

4结论

本文首次将果蝇算法优化的广义回归神经网络模型应用于船舶交通流量预测中,根据FOA算法的全局寻优特性对GRNN网络中的Spread值进行优化,充分考虑多方面因素的影响,构建了FOAGRNN船舶交通流量预测模型,其具有如下特点:

(1)良好的拟合能力和泛化能力。通过MATLAB仿真实验证明此模型具有良好的预测能力,与BP和GRNN模型相比,该模型的绝对值平均误差、相对误差绝对值平均值、均方根误差都比较小,具备更优的预测精度。

(2)良好的稳定性和快速收敛能力。该模型需要确定的参数少,能够很好地避免人为主观臆断的影响。

综合分析,FOAGRNN模型的实现过程简单,泛化能力强,预测精度较高,为船舶交通流量预测提供了一种新途径。

参考文献

[1] 冯宏祥,肖英杰.基于支持向量机的船舶交通流量预测模型[J].中国航海,2011,34(4):6266.

[2] 吕靖,方祥麟.船舶交通量的组合预测模型与方法[J].大连海事大学学报,1996,22(2): 3335.

[3] 张杏谷.回归分析方法在VTS预测研究中的应用[J].中国航海,1996(2):3235.

[4] 刘敬贤,刘振东.基于广义回归神经网络的船舶交通量预测模型[J].中国航海,2011,34(2):7478.

[5] 聂娜娜.修正型果蝇算法优化GRNN网络的尾矿库安全预测[J].计算机工程,2015,41(4): 267272.

[6] 沈浩,黄洪琼.基于PSO优化SVM的船舶流量预测算法[J].微型机与应用,2015,34(5):7375.

[7] 郎茂祥.预测理论与方法[M].北京:清华大学出版社,北京交通大学出版社,2011.

相关推荐

机器学习分类模型评估(三)-F值(F-Measure)、AUC、P-R曲线

概述上二篇文章分别讲述了准确率(accuracy)、精确率(Precision)、查准类、召回率(Recall)、查全率、ROC曲线,本文讲述机器学习分类模型评估中的F值(F-Measure)、AUC...

SPSS ROC曲线诊断临界值确定

ROC曲线是在临床医学和流行病学研究中一种常用的在诊断试验、预测模型中用于决定最佳临界点的方法。ROC曲线用真阳性率和假阳性率作图得出曲线,其横轴表示假阳性率(1-特异度),纵轴表示真阳性率(灵敏度)...

分类器模型检测--ROC曲线和AUC值

在监督学习建模中有一个重要的模块是模块的检测,就是怎样判断一个模型的好坏?那么常用的的检测的指标有P值、R值、F值、ROC曲线、AUC值等,今天来学习他们都是怎么来的,有什么用处。这里为二分类问题,即...

【Python机器学习系列】建立梯度提升模型预测心脏疾病

这是Python机器学习系列原创文章,我的第204篇原创文章。一、引言对于表格数据,一套完整的机器学习建模流程如下:针对不同的数据集,有些步骤不适用即不需要做,其中橘红色框为必要步骤,由于数据质量较高...

如何Keras自动编码器给极端罕见事件分类

全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...

机器学习分类问题:9个常用的评估指标总结

对机器学习的评估度量是机器学习核心部分,本文总结分类问题常用的metrics分类问题评估指标在这里,将讨论可用于评估分类问题预测的各种性能指标1ConfusionMatrix这是衡量分类问题性能的...

基于R语言的ROC曲线绘制及最佳阈值点(Cutoff)选择

ROC曲线在介绍ROC曲线之前,我们首先需要介绍混淆矩阵(ConfusionMatrix)。在统计分类模型的评估过程中分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来的表格...

R数据分析:多分类问题预测模型的ROC做法及解释

有同学做了个多分类的预测模型,结局有三个类别,做的模型包括多分类逻辑回归、随机森林和决策树,多分类逻辑回归是用ROC曲线并报告AUC作为模型评估的,后面两种模型报告了混淆矩阵,审稿人就提出要统一模型评...

SPSS实战:多个指标ROC曲线方向不一致的解决办法汇总(收藏)

在诊断实验和预测模型的临床效能评价中,我们常常用到ROC曲线分析。在SPSS中绘制ROC曲线操作比较简单,但如果将多个指标的ROC曲线绘制在同一个图中,有时候会碰到有些指标的ROC曲线在对角线上面,一...

小果教你快速分析ROC生存曲线图

尔云间一个专门做科研的团队原创小果生信果小伙伴们,大家好呀,很高兴和大家见面,前段时间应小伙伴出的解读ROC曲线图,小伙伴反应很是积极,这不最近小伙伴对于不同年份的ROC曲线图的分析呼声很高,...

生信文章中高频出现、模型评估必备分析——ROC曲线图,怎么看?

尔云间一个专门做科研的团队关注我们做了生信分析,拿到一堆数据,看不懂图怎么办?火山图、热图、散点图、箱线图、瀑布图···这么多类型的图都咋看?风险模型预后评估图、GO-KEGG富集分析图、GSEA...

如何看懂文献里那些图——ROC曲线图

ROC曲线的基本思想是把敏感度和特异性看作一个连续变化的过程,用一条曲线描述诊断系统的性能,其制作原理是在连续变量中不同界值点处计算相对应的灵敏度和特异度,然后以敏感度为纵坐标、1-特异性为横坐标绘制...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

准确性检验 (ROC曲线)的SPSS操作教程及结果解读

作者/风仕在上一期,我们已经讲完了诊断试验的基础知识,这期开始讲准确性检验(ROC曲线),我们主要从准确性检验(ROC曲线)的介绍、基本概念、绘制原理、统计量、使用条件及案例的SPSS操作演示这几...

SPSS:ROC 曲线为什么反了?

【作者介绍】李志辉,长期从事各类统计软件应用研究,主编或参编SPSS、MINITAB、STATISTICA多个统计软件教材共8本。代表作:电子工业出版社《SPSS常用统计分析教程(SPSS22.0中...