百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

R语言—从原始数据到单因素,到组间比较,简直保姆级教程

bigegpt 2025-03-05 13:34 9 浏览

背景介绍

R语言对于实验组之间进行单因素方差分析或者非参数检验,也是非常方便的,简单快捷,仅仅几行代码,即可快速进行组间两两比较。

软件介绍

R、RStudio


数据分析教程

(一)输入导入

1.打开我们在Excel中的数据,瞅一眼。也就是平时大家做完试验的数据,顶端第一行是各个组别的名称,下面是组里各个样品的测试数据



2.打开RStudio软件,点击File-New Project



3.选择New Directory



4.选择New Project



5.命名文件夹,选择保存路径



6.将Excel文件放在上述这个文件夹下



7.在脚本框进行提取Excel中的数据

# 提取Excel中的数据
library(openxlsx)
T <- read.xlsx("实验测试.xlsx",colNames = T)

8.我们使用View()函数查看一下数据

# 查看数据
View(T)



(二)数据处理

9.比如我们看到里面有个数值不正确,也可以在R语言中进行更改,使用edit()函数,可以对数据进行更改

# 更改数据
T1 <- edit(t)



10.因为我们的数据属于宽数据,我们需要将其转换为长数据进行处理,并查看数据

# 宽数据转换长数据
T2 <- stack(T1)
View(T2)



11.可以使用names()函数对数据集的列名进行重命名,并查看

# 重命名列名称
names(T2) <- c("Time","Group")
T2



(三)正态性检验

12.使用attach()函数将T2数据读取进R,方便调取

# 使用attach()函数将T2数据读取进R,方便调取
attach(T2)


13.使用tapply()函数对数据进行正态性检测,在下方,我们可以观察到p值,如果p值大于0.05,我们则认为数据为正态性,则继续进行方差分析;如果数据不符合正态,则直接进行非参数检验分析

# 正态性检测
tapply(Time,Group,shapiro.test)



(四)方差齐性检验

14.在各个组数据为正态性数据的基础上,我们继续看各个组之间的方差是否齐。如果方差齐,则继续进行组间两两比较,也就是单因素方差分析。如果组间方差不齐,则直接进行非参数检验。我们可以看到,p值小于0.05,组间方差不齐,那么该数据是应该使用非参数检验进行分析。为了继续学习单因素方差分析的整个流程,我们继续当做该数据符合正态,继续进行。

# 组间是否方差齐
bartlett.test(Time~Group)



(五)组间整体显著性检验

15.在方差齐的前提下,进行组间的整体显著性检验。我们可以看到,组间还是具有显著性的。

# 查看一下组间是否具有显著性
T2AOV <- aov(Time~Group,data = T2)
summary(T2AOV)



(六)组间两两比较

16.组间的两两比较,通过查看右边的p值,可以发现两两的比较是否有显著性差异

# 组间两两比较
TukeyHSD(T2AOV)



(七)非参数检验

17.在整体数据不符合正态分布,或者组间方差不齐的条件下,我们进行非参数检验。通过kruskal.test()查看后,我们发现,组间具有显著性差异。

# 非参数检验
kruskal.test(Time~Group,data = T2)



18.因此,我们直接进行组间的两两比较。没有安装的可以先进行安装包,然后加载使用。通过查看后面标注的*,就可以发现各个组间的差异了。

# 直接进行组间的两两比较
install.packages("PMCMRplus")
library(PMCMRplus)
compare <- bwsAllPairsTest(Time~Group,data = T2)
summary(compare)



今天我们就讲这么多,明天我们继续讲,计算出了组间的差异之后,如何做一个柱状图,并且加上误差条以及显著性*,以及如何导出图,用于SCI论文中。

相关推荐

方差分析简介(方差分析通俗理解)

介绍方差分析(ANOVA,AnalysisofVariance)是一种广泛使用的统计方法,用于比较两个或多个组之间的均值。单因素方差分析是方差分析的一种变体,旨在检测三个或更多分类组的均值是否存在...

正如404页面所预示,猴子正成为断网元凶--吧嗒吧嗒真好吃

吧嗒吧嗒,绘图:MakiNaro你可以通过加热、冰冻、水淹、模塑、甚至压溃压力来使网络光缆硬化。但用猴子显然是不行的。光缆那新挤压成型的塑料外皮太尼玛诱人了,无法阻挡一场试吃盛宴的举行。印度政府正...

Python数据可视化:箱线图多种库画法

概念箱线图通过数据的四分位数来展示数据的分布情况。例如:数据的中心位置,数据间的离散程度,是否有异常值等。把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)...

多组独立(完全随机设计)样本秩和检验的SPSS操作教程及结果解读

作者/风仕在上一期,我们已经讲完了两组独立样本秩和检验的SPSS操作教程及结果解读,这期开始讲多组独立样本秩和检验,我们主要从多组独立样本秩和检验介绍、两组独立样本秩和检验使用条件及案例的SPSS操作...

方差分析 in R语言 and Excel(方差分析r语言例题)

今天来写一篇实际中比较实用的分析方法,方差分析。通过方差分析,我们可以确定组别之间的差异是否超出了由于随机因素引起的差异范围。方差分析分为单因素方差分析和多因素方差分析,这一篇先介绍一下单因素方差分析...

可视化:前端数据可视化插件大盘点 图表/图谱/地图/关系图

前端数据可视化插件大盘点图表/图谱/地图/关系图全有在大数据时代,很多时候我们需要在网页中显示数据统计报表,从而能很直观地了解数据的走向,开发人员很多时候需要使用图表来表现一些数据。随着Web技术的...

matplotlib 必知的 15 个图(matplotlib各种图)

施工专题,我已完成20篇,施工系列几乎覆盖Python完整技术栈,目标只总结实践中最实用的东西,直击问题本质,快速帮助读者们入门和进阶:1我的施工计划2数字专题3字符串专题4列表专题5流程控制专题6编...

R ggplot2常用图表绘制指南(ggplot2绘制折线图)

ggplot2是R语言中强大的数据可视化包,基于“图形语法”(GrammarofGraphics),通过分层方式构建图表。以下是常用图表命令的详细指南,涵盖基本语法、常见图表类型及示例,适合...

Python数据可视化:从Pandas基础到Seaborn高级应用

数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。Pandas内置绘图功能Pandas基于Matplotlib提供了简洁的绘...

Python 数据可视化常用命令备忘录

本文提供了一个全面的Python数据可视化备忘单,适用于探索性数据分析(EDA)。该备忘单涵盖了单变量分析、双变量分析、多变量分析、时间序列分析、文本数据分析、可视化定制以及保存与显示等内容。所...

统计图的种类(统计图的种类及特点图片)

统计图是利用几何图形或具体事物的形象和地图等形式来表现社会经济现象数量特征和数量关系的图形。以下是几种常见的统计图类型及其适用场景:1.条形图(BarChart)条形图是用矩形条的高度或长度来表示...

实测,大模型谁更懂数据可视化?(数据可视化和可视化分析的主要模型)

大家好,我是Ai学习的老章看论文时,经常看到漂亮的图表,很多不知道是用什么工具绘制的,或者很想复刻类似图表。实测,大模型LaTeX公式识别,出乎预料前文,我用Kimi、Qwen-3-235B...

通过AI提示词让Deepseek快速生成各种类型的图表制作

在数据分析和可视化领域,图表是传达信息的重要工具。然而,传统图表制作往往需要专业的软件和一定的技术知识。本文将介绍如何通过AI提示词,利用Deepseek快速生成各种类型的图表,包括柱状图、折线图、饼...

数据可视化:解析箱线图(box plot)

箱线图/盒须图(boxplot)是数据分布的图形表示,由五个摘要组成:最小值、第一四分位数(25th百分位数)、中位数、第三四分位数(75th百分位数)和最大值。箱子代表四分位距(IQR)。IQR是...

[seaborn] seaborn学习笔记1-箱形图Boxplot

1箱形图Boxplot(代码下载)Boxplot可能是最常见的图形类型之一。它能够很好表示数据中的分布规律。箱型图方框的末尾显示了上下四分位数。极线显示最高和最低值,不包括异常值。seaborn中...