百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

R数据分析:用R语言做meta分析

bigegpt 2025-03-05 13:34 9 浏览

这里以我的一篇meta分析为例,详细描述meta分析的一般步骤,该例子实现的是效应量β的合并

R包:metafor或meta包,第一个例子以metafor包为例。

1.准备数据集


2.异质性检验

install.packages("metafor")
library(metafor)
metamod<-rma(yi=β,data=metabirth3,sei=se,method="DL")
#β是回归系数的值,se是标准误,DL表示选择的是随机效应模型,固定效应模型是method="FE"
summary(metamod)#输出结果



可以看到I^2为28.34%,属于低度异质性,可采用固定效应模型。异质性低的时候可以采用固定效应模型和随机效应模型,结果差别不大,但高异质性只能选择随机效应模型,否则会使结果外推性受到约束。此处选择随机效应模型是出于保守情况考虑。

  • fixed-effect model是基于跨研究间不存在异质性的假设,也就是其合并时,默认运算是认为所纳入合并的研究均为同质;

  • random-effect model是基于跨研究间存在异质性的假设,该合并模型承认研究间异质性的存在,但是不对异质性加以处理;

  • 如果纳入合并的研究间存在异质性,尽管未达到我们常规设定的I^2>50%,但是在用fixed-effect model合并时,默认运算直接忽略这一部分异质性的存在,这样合并的结果会造成假阳性误差,而选用random-effect model合并时,尽管不处理异质性,但是其默认运算承认异质性的存在,合并结果更可信!

3.森林图绘制

forestplot<-forest(metamod,refline = 1,mlab="Random-effect Model for All Studies",
                   slab=paste(metabirth3$author,metabirth3$year,sep=","),
                   xlab="β",showweights = T)
text(-500,6:1,pos=2,metabirth3$country)
text(c(-1600,-500,300,800),8,pos=c(4,2,4,4),c("Author(s) and Year", "Location","Weight","β[95%CI]"),cex=1,font=2)
#添加标签

结果如下图


黑色方块表示的是权重大小,对应着右方的weight,水平横线是95%置信区间。菱形是合并效应值,95%置信区间小于0,意味着meta分析结果有统计学意义。

4.文献发表偏倚检验

可以用漏斗图及Begger's及Egger's检验

funnel(metamod)
ranktest(metamod)#Begg's检验#
regtest(metamod)#Egger's检验#


可能是由于文献数量的限制,漏斗图呈现明显不对称模式,无法判断是由于发表偏倚所致还是文献数量太少的缘故


可以看出Begg's检验及Egger's 检验的结果,P值都是大于0.05的,也就意味着没有发表偏倚。

5.敏感性检验

leavelout(metamod,digits = 3)


本文转载自CSDN一个人旅行*-*

往期内容:

R数据分析:贝叶斯定理的R语言模拟

R数据分析:用R语言做潜类别分析LCA

R可视化:如何用R做一个让别人一目了然的图

R语言:利用caret的dummyVars函数设置虚拟变量

R数据分析:R Markdown:数据分析过程报告利器,你必须得学呀

相关推荐

程序员请收好:10个非常有用的 Visual Studio Code 插件

一个插件列表,可以让你的程序员生活变得轻松许多。作者|Daan译者|Elle出品|CSDN(ID:CSDNnews)以下为译文:无论你是经验丰富的开发人员还是刚刚开始第一份工作的初级开发人...

PADS在WIN10系统中菜单显示不全的解决方法

决定由AD转PADS,打开发现菜单显示不正常,如下图所示:这个是由于系统的默认字体不合适导致,修改一下系统默认字体即可,修改方法如下:打开开始菜单-->所有程序-->Windows系统--...

一文讲解Web前端开发基础环境配置

先从基本的HTML语言开始学习。一个网页的所有内容都是基于HTML,为了学好HTML,不使用任何集成工具,而用一个文本编辑器,直接从最简单的HTML开始编写HTML。先在网上下载notepad++文...

TCP/IP协议栈在Linux内核中的运行时序分析

本文主要是讲解TCP/IP协议栈在Linux内核中的运行时序,文章较长,里面有配套的视频讲解,建议收藏观看。1Linux概述  1.1Linux操作系统架构简介Linux操作系统总体上由Linux...

从 Angular Route 中提前获取数据

#头条创作挑战赛#介绍提前获取意味着在数据呈现在屏幕之前获取到数据。本文中,你将学到,在路由更改前怎么获取到数据。通过本文,你将学会使用resolver,在AngularApp中应用re...

边做游戏边划水: 基于浅水方程的水面交互、河道交互模拟方法

以下文章来源于腾讯游戏学堂,作者Byreave篇一:基于浅水方程的水面交互本文主要介绍一种基于浅水方程的水体交互算法,在基本保持水体交互效果的前提下,实现了一种极简的水面模拟和物体交互方法。真实感的...

Nacos介绍及使用

一、Nacos介绍Nacos是SpringCloudAlibaba架构中最重要的组件。Nacos是一个更易于帮助构建云原生应用的动态服务发现、配置和服务管理平台,提供注册中心、配置中心和动态DNS...

Spring 中@Autowired,@Resource,@Inject 注解实现原理

使用案例前置条件:现在有一个Vehicle接口,它有两个实现类Bus和Car,现在还有一个类VehicleService需要注入一个Vehicle类型的Bean:publicinte...

一文带你搞懂Vue3 底层源码

作者:妹红大大转发链接:https://mp.weixin.qq.com/s/D_PRIMAD6i225Pn-a_lzPA前言vue3出来有一段时间了。今天正式开始记录一下梗vue3.0.0-be...

一线开发大牛带你深度解析探讨模板解释器,解释器的生成

解释器生成解释器的机器代码片段都是在TemplateInterpreterGenerator::generate_all()中生成的,下面将分小节详细展示该函数的具体细节,以及解释器某个组件的机器代码...

Nacos源码—9.Nacos升级gRPC分析五

大纲10.gRPC客户端初始化分析11.gRPC客户端的心跳机制(健康检查)12.gRPC服务端如何处理客户端的建立连接请求13.gRPC服务端如何映射各种请求与对应的Handler处理类14.gRP...

聊聊Spring AI的Tool Calling

序本文主要研究一下SpringAI的ToolCallingToolCallbackorg/springframework/ai/tool/ToolCallback.javapublicinter...

「云原生」Containerd ctr,crictl 和 nerdctl 命令介绍与实战操作

一、概述作为接替Docker运行时的Containerd在早在Kubernetes1.7时就能直接与Kubelet集成使用,只是大部分时候我们因熟悉Docker,在部署集群时采用了默认的dockers...

在MySQL登录时出现Access denied for user ~~ (using password: YES)

Windows~~~在MySQL登录时出现Accessdeniedforuser‘root‘@‘localhost‘(usingpassword:YES),并修改MySQL密码目录适用...

mysql 8.0多实例批量部署script

背景最近一个项目上,客户需要把阿里云的rdsformysql数据库同步至线下,用作数据的灾备,需要在线下的服务器上部署mysql8.0多实例,为了加快部署的速度,写了一个脚本。解决方案#!/bi...