百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

tidyverse使用推荐

bigegpt 2025-03-05 13:35 11 浏览

大家在获得了百迈客的分析报告后,需要筛选自己关注的相关结果。tidyverse包能够快速的帮助大家进行筛选。

tidyverse包中包含多种R包,如:ggplot、dplyr、readr、tidyr等。这些包使得日常的数据处理和绘图更加方便。

下面将介绍一些生信处理中实用的操作。

1、tidyverse包的安装

tips:可以设置一些镜像源,提高包的安装速度和成功率

options("repos" = c(CRAN="http://mirrors.cloud.tencent.com/CRAN/"))

options(BioC_mirror="http://mirrors.cloud.tencent.com/bioconductor")

install.packages("tidyverse")

2、快速筛选上下调基因

当获得了百迈客的差异分析结果,但是结果不理想时,需要自己调整差异筛选条件,

dplyr包能够方便操作。

dplyr包中常用的几个函数:

select:筛选相关的列

filter:筛选符合条件的行

mutate:在原有的数据上加一列

summarise:进行统计

group_by:对数据进行分组

rowwise:按行进行操作

利用filter可以在差异分析结果中快速筛选出显著差异的上下调基因。

读入数据:

> head(data)

# A tibble: 4 x 4

gene FDR P.Value logFC

1 gene1 0.02 0.006 0.3

2 gene2 0.003 0.005 0.7

3 gene3 0.002 0.0005 -0.48

4 gene4 0.301 0.13 -0.81

筛选上下调基因:

##筛选上调

gene_up <- data>% filter(FDR<0.05 logfc>0)

> gene_up

# A tibble: 2 x 4

gene FDR P.Value logFC

1 gene1 0.02 0.006 0.3

2 gene2 0.003 0.005 0.7


##筛选下调

gene_down <- data>% filter(FDR<0.05 & logFC<0)

> gene_down

# A tibble: 1 x 4

gene FDR P.Value logFC

1 gene3 0.002 0.0005 -0.48

tips:%>%是管道符,作用和linux中的 | 一样。Rstudio中实用ctrl+shift+m能够快速输入。


筛选上下调基因并加上对应标签,使用mutate和case_when函数:

> data %>% mutate(class=case_when(

+ FDR<0.05&logfc>0~"up",

+ FDR<0.05&logFC<0~"down"

+ ))

# A tibble: 4 x 5

gene FDR P.Value logFC class

1 gene1 0.02 0.006 0.3 up

2 gene2 0.003 0.005 0.7 up

3 gene3 0.002 0.0005 -0.48 down

4 gene4 0.301 0.13 -0.81 NA

03

同名基因取均值或最大值

当拿到百迈客的基因表达谱之后,有时需要对同名基因进行处理。使用dplyr包中的group_by函数和acorss可以快速进行。

###数据

> gene_exp

# A tibble: 6 x 5

gene A B C D

1 gene 1 1 2 3 4

2 gene 1 4 3 2 1

3 gene 2 2 3 4 5

4 gene 2 0 4 3 2

5 gene 2 3 2 4 2

6 gene 3 3 4 2 1

以均值作为表达值

> gene_exp %>% group_by(gene) %>% summarise(across(where(is.numeric),mean))

`summarise()` ungrouping output (override with `.groups` argument)

# A tibble: 3 x 5

gene A B C D

1 gene 1 2.5 2.5 2.5 2.5

2 gene 2 1.67 3 3.67 3

3 gene 3 3 4 2 1


以最大值作为表达值

> gene_exp %>% group_by(gene) %>% summarise(across(A:D,max))

`summarise()` ungrouping output (override with `.groups` argument)

# A tibble: 3 x 5

gene A B C D

1 gene 1 4 3 3 4

2 gene 2 3 4 4 5

3 gene 3 3 4 2 1


这边使用了across的两种方式筛选需要处理的列:

1. 使用数据类型,对所有满足要求的列进行处理,如:where(is.numeric),就是对所有的数字类型的列进行处理

2. 使用列名进行选择,对选择的列进行处理,如:A:D,就是对A到D列进行处理

04

按行对数据进行处理

计算每行的均值

> gene_exp %>% rowwise(gene) %>% mutate(avg=mean(c_across(is.numeric)))

# A tibble: 6 x 6

# Rowwise: gene

gene A B C D avg

1 gene 1 1 2 3 4 2.5

2 gene 1 4 3 2 1 2.5

3 gene 2 2 3 4 5 3.5

4 gene 2 0 4 3 2 2.25

5 gene 2 3 2 4 2 2.75

6 gene 3 3 4 2 1 2.5

利用rowwsie,可以将数据按行进行处理,默认是按列进行处理


5、提取通路中涉及的基因

百迈客的通路富集结果中包含许多信息,有时想快速了解相关通路涉及基因时。利用tidyr包中的函数能够方便清理数据,使得数据更加规整。其中separate_rows函数能够将某列中数据按字符分割成多行,利用这个函数能够快速提取富集到通路的相关基因。

> data

# A tibble: 1 x 2

GO Gene_ID

1 Go1 Gene 1;Gene 2;Gene 3

> data %>% separate_rows(Gene_ID,sep=";")

# A tibble: 3 x 2

GO Gene_ID

1 Go1 Gene 1

2 Go1 Gene 2

3 Go1 Gene 3


好了,今天tidyverse包的简单使用就介绍到这。如果你觉得上面的操作不能满足你的分析需要,你可以访问我们的百迈客云平台,上面有诸多工具,总有一款适合你
https://international.biocloud.net/zh/software/tools/list。

参考书籍:

1. Hadley Wickham: R for Data Science.

相关推荐

方差分析简介(方差分析通俗理解)

介绍方差分析(ANOVA,AnalysisofVariance)是一种广泛使用的统计方法,用于比较两个或多个组之间的均值。单因素方差分析是方差分析的一种变体,旨在检测三个或更多分类组的均值是否存在...

正如404页面所预示,猴子正成为断网元凶--吧嗒吧嗒真好吃

吧嗒吧嗒,绘图:MakiNaro你可以通过加热、冰冻、水淹、模塑、甚至压溃压力来使网络光缆硬化。但用猴子显然是不行的。光缆那新挤压成型的塑料外皮太尼玛诱人了,无法阻挡一场试吃盛宴的举行。印度政府正...

Python数据可视化:箱线图多种库画法

概念箱线图通过数据的四分位数来展示数据的分布情况。例如:数据的中心位置,数据间的离散程度,是否有异常值等。把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)...

多组独立(完全随机设计)样本秩和检验的SPSS操作教程及结果解读

作者/风仕在上一期,我们已经讲完了两组独立样本秩和检验的SPSS操作教程及结果解读,这期开始讲多组独立样本秩和检验,我们主要从多组独立样本秩和检验介绍、两组独立样本秩和检验使用条件及案例的SPSS操作...

方差分析 in R语言 and Excel(方差分析r语言例题)

今天来写一篇实际中比较实用的分析方法,方差分析。通过方差分析,我们可以确定组别之间的差异是否超出了由于随机因素引起的差异范围。方差分析分为单因素方差分析和多因素方差分析,这一篇先介绍一下单因素方差分析...

可视化:前端数据可视化插件大盘点 图表/图谱/地图/关系图

前端数据可视化插件大盘点图表/图谱/地图/关系图全有在大数据时代,很多时候我们需要在网页中显示数据统计报表,从而能很直观地了解数据的走向,开发人员很多时候需要使用图表来表现一些数据。随着Web技术的...

matplotlib 必知的 15 个图(matplotlib各种图)

施工专题,我已完成20篇,施工系列几乎覆盖Python完整技术栈,目标只总结实践中最实用的东西,直击问题本质,快速帮助读者们入门和进阶:1我的施工计划2数字专题3字符串专题4列表专题5流程控制专题6编...

R ggplot2常用图表绘制指南(ggplot2绘制折线图)

ggplot2是R语言中强大的数据可视化包,基于“图形语法”(GrammarofGraphics),通过分层方式构建图表。以下是常用图表命令的详细指南,涵盖基本语法、常见图表类型及示例,适合...

Python数据可视化:从Pandas基础到Seaborn高级应用

数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。Pandas内置绘图功能Pandas基于Matplotlib提供了简洁的绘...

Python 数据可视化常用命令备忘录

本文提供了一个全面的Python数据可视化备忘单,适用于探索性数据分析(EDA)。该备忘单涵盖了单变量分析、双变量分析、多变量分析、时间序列分析、文本数据分析、可视化定制以及保存与显示等内容。所...

统计图的种类(统计图的种类及特点图片)

统计图是利用几何图形或具体事物的形象和地图等形式来表现社会经济现象数量特征和数量关系的图形。以下是几种常见的统计图类型及其适用场景:1.条形图(BarChart)条形图是用矩形条的高度或长度来表示...

实测,大模型谁更懂数据可视化?(数据可视化和可视化分析的主要模型)

大家好,我是Ai学习的老章看论文时,经常看到漂亮的图表,很多不知道是用什么工具绘制的,或者很想复刻类似图表。实测,大模型LaTeX公式识别,出乎预料前文,我用Kimi、Qwen-3-235B...

通过AI提示词让Deepseek快速生成各种类型的图表制作

在数据分析和可视化领域,图表是传达信息的重要工具。然而,传统图表制作往往需要专业的软件和一定的技术知识。本文将介绍如何通过AI提示词,利用Deepseek快速生成各种类型的图表,包括柱状图、折线图、饼...

数据可视化:解析箱线图(box plot)

箱线图/盒须图(boxplot)是数据分布的图形表示,由五个摘要组成:最小值、第一四分位数(25th百分位数)、中位数、第三四分位数(75th百分位数)和最大值。箱子代表四分位距(IQR)。IQR是...

[seaborn] seaborn学习笔记1-箱形图Boxplot

1箱形图Boxplot(代码下载)Boxplot可能是最常见的图形类型之一。它能够很好表示数据中的分布规律。箱型图方框的末尾显示了上下四分位数。极线显示最高和最低值,不包括异常值。seaborn中...