百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

R语言基于Excel数据绘制柱状图、条形图的方法

bigegpt 2025-03-05 13:35 11 浏览

 本文介绍基于R语言中的readxl包与ggplot2包,读取Excel表格文件数据,并绘制具有多个系列柱状图条形图的方法。

 首先,我们配置一下所需用到的R语言readxl包与ggplot2包;其中,readxl包是用来读取Excel表格文件数据的,而ggplot2包则是用以绘制柱状图的。包的下载方法也非常简单,以readxl包为例,我们输入如下的代码即可。

install.packages("readxl")

 输入代码后,按下回车键,运行代码;如下图所示。


readxl包下载完成后,通过同样的方法配置ggplot2包。

install.packages("ggplot2")

此外,在用代码进行数据分析、可视化时,有时需要对数据加以长数据宽数据的转换(具体什么意思在后文有介绍),这里需要用到另一个R语言包reshape2,我们也就在此将其一并配置好。

install.packages("reshape2")

接下来,我们即可开始代码的撰写。首先,我们将需要用到的包导入。

library(readxl)
library(ggplot2)
library(reshape2)

随后,我们进行Excel表格文件数据的读取;这里我们就通过readxl包中的read_excel()函数来实现表格数据的读取。其中,函数的第一个参数表示待读取的Excel表格文件路径与名称,第二个参数则表示这些数据具体在哪一个Sheet中;由于我这里需要的数据存放在Excel表格文件的第2Sheet中,因此就选择sheet = 2即可。

xlsx_file <- read_excel(r"(E:\02_Project\01_Chlorophyll\ClimateZone\Split\Result\Result.xlsx)", sheet = 2)

其中,原本在表格文件中我的数据如下所示。


通过上述代码,我们即可将数据读入R语言中;其具体格式如下图所示。可以看到,读入后的数据是一个tibble类别的变量,tibbleData Frame格式数据的一种改进,我们在这里可以就将其视作Data Frame格式数据加以后续处理。


此外,如果大家是使用RStudio软件进行代码的撰写,还可以双击这一变量,更直观地查看读入后的数据具体是什么样子的,如下图所示。


接下来,我们需要对数据加以长、宽转换。首先,简单来说,宽数据就是如上图所示的数据,而长数据则是如下图所示的数据;其中,我们在获取、记录原始数据时,往往获取的是宽数据,因为这一类数据具有更加直观、更易记录的特点;而在用数据分析软件或代码对数据加以深入处理或可视化操作时,往往系统需要的是长数据。因此,我们这里需要对宽数据长数据加以转换;这一转换可以通过melt()函数来实现,具体的代码如下所示。

xlsx_data <- melt(xlsx_file, id.var = "...1")

其中,melt()函数的第一个参数表示需要进行转换的变量,第二个参数则是ID变量,一般情况下就是表述数据序号的第一列数据;我这里由于原本Excel的数据中就没有表示序号的那一列数据,因此就选择了原有数据的第一列作为ID变量。执行上述代码后,我们得到的长数据如下图所示。


此外,melt()函数在运行时,还可以指定数据转换后的列名。如以下代码就表示,我们希望将转换后表示变量的列的名称设置为Factor,表示观测值的列的名称设置为q

xlsx_data <- melt(xlsx_file, id.var = "...1", variable.name = "Factor", value.name = "q")

执行上述代码,得到的长数据如下图所示。


当然,这里需要提一句,关于宽数据长数据的转换,涉及到很多内容;如果大家有需要,可以查看melt()函数的官方帮助文档。

完成数据格式转换后,我们即可开始绘图。这里我们就直接通过ggplot2包的ggplot()函数,对柱状图加以绘制即可;具体代码如下所示。

ggplot(data = xlsx_data, mapping = aes(x = Factor, y = q, fill = ...1)) + geom_bar(stat = "identity", position = "dodge")

其中,ggplot()函数的第一个参数data表示需要参与绘图的数据,第二个参数mapping表示我们需要用哪一列数据作为X轴,哪一列作为Y轴;同时,其内部的fill参数表示我们需要将柱状图分为多个系列(如果大家的柱状图只有1个系列,那么就不需要fill这个参数了),其后指定的变量就表示我们需要基于这一变量对数据的系列加以区分。接下来,加号后面的geom_bar参数,是我们绘制多序列柱状图所需要设定的,其中position参数设置为"dodge"就表示我们希望将不同的系列平行放置(如果不设置position参数,那么不同系列的柱子就会垂直堆积,有点类似堆积柱状图)。

执行上述代码,得到如下所示的结果。


此外,如果大家希望柱状图是横向伸展的,就在最后增添+ coord_flip()代码即可。

ggplot(data = xlsx_data, mapping = aes(x = Factor, y = q, fill = ...1)) + geom_bar(stat = "identity", position = "dodge") + coord_flip()

执行上述代码,得到如下所示的结果。


在这里,我们仅仅是对ggplot()函数做了一个初步的介绍;关于其更深入的了解,大家直接查看其官方帮助文档即可。

至此,大功告成。

欢迎关注:疯狂学习GIS

相关推荐

方差分析简介(方差分析通俗理解)

介绍方差分析(ANOVA,AnalysisofVariance)是一种广泛使用的统计方法,用于比较两个或多个组之间的均值。单因素方差分析是方差分析的一种变体,旨在检测三个或更多分类组的均值是否存在...

正如404页面所预示,猴子正成为断网元凶--吧嗒吧嗒真好吃

吧嗒吧嗒,绘图:MakiNaro你可以通过加热、冰冻、水淹、模塑、甚至压溃压力来使网络光缆硬化。但用猴子显然是不行的。光缆那新挤压成型的塑料外皮太尼玛诱人了,无法阻挡一场试吃盛宴的举行。印度政府正...

Python数据可视化:箱线图多种库画法

概念箱线图通过数据的四分位数来展示数据的分布情况。例如:数据的中心位置,数据间的离散程度,是否有异常值等。把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)...

多组独立(完全随机设计)样本秩和检验的SPSS操作教程及结果解读

作者/风仕在上一期,我们已经讲完了两组独立样本秩和检验的SPSS操作教程及结果解读,这期开始讲多组独立样本秩和检验,我们主要从多组独立样本秩和检验介绍、两组独立样本秩和检验使用条件及案例的SPSS操作...

方差分析 in R语言 and Excel(方差分析r语言例题)

今天来写一篇实际中比较实用的分析方法,方差分析。通过方差分析,我们可以确定组别之间的差异是否超出了由于随机因素引起的差异范围。方差分析分为单因素方差分析和多因素方差分析,这一篇先介绍一下单因素方差分析...

可视化:前端数据可视化插件大盘点 图表/图谱/地图/关系图

前端数据可视化插件大盘点图表/图谱/地图/关系图全有在大数据时代,很多时候我们需要在网页中显示数据统计报表,从而能很直观地了解数据的走向,开发人员很多时候需要使用图表来表现一些数据。随着Web技术的...

matplotlib 必知的 15 个图(matplotlib各种图)

施工专题,我已完成20篇,施工系列几乎覆盖Python完整技术栈,目标只总结实践中最实用的东西,直击问题本质,快速帮助读者们入门和进阶:1我的施工计划2数字专题3字符串专题4列表专题5流程控制专题6编...

R ggplot2常用图表绘制指南(ggplot2绘制折线图)

ggplot2是R语言中强大的数据可视化包,基于“图形语法”(GrammarofGraphics),通过分层方式构建图表。以下是常用图表命令的详细指南,涵盖基本语法、常见图表类型及示例,适合...

Python数据可视化:从Pandas基础到Seaborn高级应用

数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。Pandas内置绘图功能Pandas基于Matplotlib提供了简洁的绘...

Python 数据可视化常用命令备忘录

本文提供了一个全面的Python数据可视化备忘单,适用于探索性数据分析(EDA)。该备忘单涵盖了单变量分析、双变量分析、多变量分析、时间序列分析、文本数据分析、可视化定制以及保存与显示等内容。所...

统计图的种类(统计图的种类及特点图片)

统计图是利用几何图形或具体事物的形象和地图等形式来表现社会经济现象数量特征和数量关系的图形。以下是几种常见的统计图类型及其适用场景:1.条形图(BarChart)条形图是用矩形条的高度或长度来表示...

实测,大模型谁更懂数据可视化?(数据可视化和可视化分析的主要模型)

大家好,我是Ai学习的老章看论文时,经常看到漂亮的图表,很多不知道是用什么工具绘制的,或者很想复刻类似图表。实测,大模型LaTeX公式识别,出乎预料前文,我用Kimi、Qwen-3-235B...

通过AI提示词让Deepseek快速生成各种类型的图表制作

在数据分析和可视化领域,图表是传达信息的重要工具。然而,传统图表制作往往需要专业的软件和一定的技术知识。本文将介绍如何通过AI提示词,利用Deepseek快速生成各种类型的图表,包括柱状图、折线图、饼...

数据可视化:解析箱线图(box plot)

箱线图/盒须图(boxplot)是数据分布的图形表示,由五个摘要组成:最小值、第一四分位数(25th百分位数)、中位数、第三四分位数(75th百分位数)和最大值。箱子代表四分位距(IQR)。IQR是...

[seaborn] seaborn学习笔记1-箱形图Boxplot

1箱形图Boxplot(代码下载)Boxplot可能是最常见的图形类型之一。它能够很好表示数据中的分布规律。箱型图方框的末尾显示了上下四分位数。极线显示最高和最低值,不包括异常值。seaborn中...