无所不能,将 Vue 渲染到嵌入式液晶屏
bigegpt 2025-05-26 13:53 5 浏览
该文章转载自公众号@前端时刻,
https://mp.weixin.qq.com/s/WDHW36zhfNFVFVv4jO2vrA
前言
之前看了雪碧大佬的将 React 渲染到嵌入式液晶屏觉得很有意思,React能被渲染到嵌入式液晶屏,那Vue是不是也可以呢?所以本文我们要做的就是:
如标题所示,就是将Vue渲染到嵌入式液晶屏。这里使用的液晶屏是0.96 寸大128x64分辨率的SSD1306。而要将Vue渲染到液晶屏,我们还需要一个桥梁,它必须具备控制液晶屏及运行代码的能力。而树莓派的硬件对接能力和可编程性天然就具备这个条件。最后一个问题来了,我们用什么技术来实现呢?
这里我选择了Node.js。原因:
- Atwood定律:“任何可以使用JavaScript来编写的应用,最终会由JavaScript编写。”
- 驱动硬件我大Node.js 一行npm install 走天下。
这个有趣的实践可拆分为这几个步骤:
- 在Node.js运行Vue
- 树莓派连接屏幕芯片
- Node.js驱动硬件
Talk is cheap,Let's Go!!!
跨端渲染
无论是 基于React的React Native 宣称的「Learn Once, Write Anywhere」,还是基于Vue的Weex宣称的「Write Once, Run Everywhere」口号,本质上强调的都是它们跨端渲染的能力。那什么是跨端渲染呢?
React: ReactNative Taro ...
Vue: Weex UniApp ...
各种五花八门的前端框架纷纷袭来,前端工程师们纷纷抱怨学不动了~
老板们看到纷纷笑嘻嘻, App单,前端分,小程序单,前端吞,PC/H5,前端昏。skr~
这些跨平台框架原理其实都大同小异,选定Vue/React作为DSL,以这个 DSL 框架为标准在各端分别编译,在运行时,各端使用各自的渲染引擎(Render Engines)进行渲染,底层渲染引擎中不必关心上层DSL的语法和更新策略,只需要处理 JS Framework 中统一定义的节点结构和渲染指令。也正是因为这一渲染层的抽象,使得跨平台/框架成为了可能。
Vue和React现在都实现了自定义渲染器,下面我们简单介绍一下:
React Reconciler
React16采用新的Reconciler,内部采用了Fiber的架构。react-reconciler模块正是基于v16的新Reconciler实现,它提供了创建React自定义渲染器的能力.
const Reconciler = require('react-reconciler');
const HostConfig = {
// You'll need to implement some methods here.
// See below for more information and examples.
};
const MyRenderer = Reconciler(HostConfig);
const RendererPublicAPI = {
render(element, container, callback) {
// Call MyRenderer.updateContainer() to schedule changes on the roots.
// See ReactDOM, React Native, or React ART for practical examples.
}
};
module.exports = RendererPublicAPI;
Vue createRenderer
vue3 提供了createRender API,让我们创建自定义渲染器。
createRenderer 函数接受两个泛型参数:HostNode 和 HostElement,对应于宿主环境中的 节点 和 元素 类型。
自定义渲染器可以传入特定于平台的类型,如下所示:
import { createRenderer } from 'vue'
const { render, createApp } = createRenderer<Node, Element>({
patchProp,
...nodeOps
})
在Node.js上运行Vue
SFC To JS
<template>
<text x="0" y="0">Hello Vue</text>
<text x="0" y="20">{{ time }}</text>
<text x="0" y="40">Hi SSD3306</text>
</template>
<script>
import { defineComponent, ref, toRefs, onMounted } from "vue";
import dayjs from "dayjs";
export default defineComponent({
setup() {
const time = ref(dayjs().format("hh:mm:ss"));
onMounted(() => {
setInterval(() => {
time.value = dayjs().format("hh:mm:ss");
}, 800);
});
return {
...toRefs({
time,
}),
};
},
});
</script>
要将Vue渲染到液晶屏,我们首先需要让Vue能运行在Node.js上,但是上面这个SFC是没办法被Node.js识别的,它只是vue的编程规范,是一种方言。所以我们需要做的是先将SFC转为js。这里我使用Rollup打包将SFC转为JS(相关配置这里就不啰嗦了,贴个传送门)。到了这一步,Node.js就能成功运行打包后的js代码了,这还不够,这时候Vue组件的状态更新是没办法同步到Node.js的。
Create Custom Renderer
组件状态更新我们需要通知Node.js 更新并渲染液晶屏内容,我们需要创建自定义的"更新策略"。这里就需要用到了我们前面提到的自定义渲染器:createRenderer API。下面我们简单介绍下我们相关使用:
// index.js
// 自定义渲染器
import { createApp } from "./renderer.js";
// 组件
import App from "./App.vue";
// 容器
function getContainer(){
// ...
}
// 创建渲染器,将组件挂载到容器上
createApp(App).mount(getContainer());
// renderer.js
import { createRenderer } from "vue";
// 定义渲染器,传入自定义nodeOps
const render = createRenderer({
// 创建元素
createElement(type) {},
// 插入元素
insert(el, parent) {},
// props更新
patchProp(el, key, preValue, nextValue) {},
// 设置元素文本
setElementText(node, text) {},
// 以下忽略,有兴趣的童鞋可自行了解
remove(el) {},
createText(type) {},
parentNode(node) {},
nextSibling(nide) {},
});
export function createApp(root) {
return render.createApp(root);
}
vue渲染器默认实现了Web平台DOM编程接口,将Virtual DOM 渲染为真实DOM。但是这个渲染器只能运行在浏览器中,不具备跨平台能力。所以我们必须重写nodeOps相关钩子函数,实现对应宿主环境元素的增删改查操作。接下来我们定义一个适配器,来实现相关逻辑。
Adapter
在实现前,我们先来理一下我们要实现的逻辑:
- 创建元素实例 (create)
- 将元素实例插入容器,由容器进行管理 (insert)
- 状态改变时,通知容器进行更新 (update)
// adapter.js
// 文本元素
export class Text {
constructor(parent) {
// 提供一个父节点用于寻址调用更新 (前面提到状态更新由容器进行)
this.parent = parent;
}
// 元素绘制,这里需要实现文本元素渲染逻辑
draw(text) {
console.log(text);
}
}
// 适配器
export class Adapter {
constructor() {
// 装载容器
this.children = [];
}
// 装载子元素
append(child) {
this.children.push(child);
}
// 元素状态更新
update(node, text) {
// 找到目标渲染进行绘制
const target = this.children.find((child) => child === node);
target.draw(text);
}
clear() {}
}
// 容器 === 适配器实例
export function getContainer() {
return new Adapter();
}
好了,基本的适配器已经完成了,接下来我们来实现渲染器。
Renderer Abstract
import { createRenderer } from "vue";
import { Text } from "./adapter";
let uninitialized = [];
const render = createRenderer({
// 创建元素,实例化Text
createElement(type) {
switch (type) {
case "text":
return new Text();
}
},
// 插入元素,调用适配器方法进行装载统一管理
insert(el, parent) {
if (el instanceof Text) {
el.parent = parent;
parent.append(el);
uninitialized.map(({ node, text }) => el.parent.update(node, text));
}
return el;
},
// props更新
patchProp(el, key, preValue, nextValue) {
el[key] = nextValue;
},
// 文本更新,重新绘制
setElementText(node, text) {
if (node.parent) {
console.log(text);
node.parent.clear(node);
node.parent.update(node, text);
} else {
uninitialized.push({ node, text });
}
},
remove(el) {},
createText(type) {},
parentNode(node) {},
nextSibling(nide) {},
});
export function createApp(root) {
return render.createApp(root);
}
树莓派连接屏幕芯片
SSD1306 OLED
OLED,即有机发光二极管( Organic Light Emitting Diode)。是一种液晶显示屏。而SSD1306就是一种OLED驱动芯片。ssd1306本身支持多种总线驱动方式:6800/8080 并口、SPI及IIC接口方式。这里我们选择IIC接口方式进行通信,理由很简单: 1. 接线简单方便(两根线就可以驱动OLED) 2.轮子好找...缺点就是IIC 传输数据效率太慢了,刷新率只有 10FPS 不到。而SPI刷新率最大能达到 2200FPS。
硬件接线
IIC 仅需要 4 根线就可以,其中 2 根是电源,另外 2 根是 SDA 和 SCL。我们使用 IIC-1 接口。下面是树莓派的 GPIO 引脚图。
注意:请一定以屏幕的实际引脚编号为准。
- 屏幕VCC接树莓派1号引脚。- 3.3v电源
- 屏幕GND接树莓派9号引脚。- 地线
- 屏幕SDA接树莓派3号引脚。- IIC 通信中为数据管脚
- 屏幕SCL接树莓派5号引脚。- IIC 通信中为时钟管脚
树莓派启用I2C
1.安装工具包
sudo apt-get install -y i2c-tools
2.启用I2C
- sudo raspi-config
- 选择 Interfacing Options
- Enable I2C
3.检查设备挂载状态
i2c-tools提供的i2cdetect命令可以查看挂载设备
sudo i2cdetect -y 1
Node.js驱动硬件
Node.js Lib
我们先来看几个Node.js库,看完你会不得不感叹~任何可以使用JavaScript来编写的应用,最....
johnny-five
Johnnt-Five 是一个支持 JavaScript 语言编程的机器人和 IOT 开发平台,基于 Firmata 协议。Firmata 是计算机软件和微控制器之间的一种通信协议。使用它,我们可以很简单的架起树莓派和屏幕芯片之间的桥梁。
raspi-io
Raspi IO是一个为Johnny-Five Node.js机器人平台提供的I/O插件,该插件使Johnny-Five能够控制一个Raspberry Pi上的硬件。
oled-font-5x7
5x7 oled字体库,将字符转为16进制编码,让oled程序能够识别。用于绘制文字。
oled-js
兼容johnny-five的oled支持库 (johnny-five本身并不支持oled),提供了操作oled的API。
驱动程序实现
// oled.js
const five = require("johnny-five");
const Raspi = require("raspi-io").RaspiIO;
const font = require("oled-font-5x7");
const Oled = require("oled-js");
const OPTS = {
width: 128, // 分辨率 0.96寸 ssd1306 128*64
height: 64, // 分辨率
address: 0x3c, // 控制输入地址,ssd1306 默认为0x3c
};
class OledService {
constructor() {
this.oled = null;
}
/**
* 初始化: 创建一个Oled实例
* 创建后,我们就可以通过操作Oled实例来控制屏幕了
*/
init() {
const board = new five.Board({
io: new Raspi(),
});
// 监听程序退出,关闭屏幕
board.on("exit", () => {
this.oled && this.remove();
});
return new Promise((resolve, reject) => {
board.on("ready", () => {
// Raspberry Pi connect SSD 1306
this.oled = new Oled(board, five, OPTS);
// 打开屏幕显示
this.oled.turnOnDisplay();
resolve();
});
});
}
// 绘制文字
drawText({ text, x, y }) {
// 重置光标位置
this.oled.setCursor(+x, +y);
// 绘制文字
this.oled.writeString(font, 2, text, 1, true, 2);
}
clear({ x, y }) {
this.oled.setCursor(+x, +y);
}
// 刷新屏幕
update() {
this.oled.update();
}
remove() {
// 关闭显示
this.oled.turnOffDisplay();
this.oled = null;
}
}
export function oledService() {
return new OledService();
}
接下来,我们就可以在适配器中调用oled程序渲染屏幕了~
// index.js
import { createApp } from "./renderer.js";
import { getContainer } from "./adapter";
import { oledService } from "./oled";
import App from "./App.vue";
const oledIns = oledService();
oledIns.init().then(() => {
createApp(App).mount(getContainer(oledIns));
});
// adapter.js
export class Text {
constructor(parent) {
this.parent = parent;
}
draw(ints, opts) {
ints.drawText(opts);
ints.update();
}
}
export class Adapter {
constructor(oledIns) {
this.children = [];
this.oled = oledIns;
}
append(child) {
this.children.push(child);
}
update(node, text) {
const target = this.children.find((child) => child === node);
target.draw(this.oled, {
text,
x: node.x,
y: node.y,
});
}
clear(opts) {
this.oled.clear(opts);
}
}
export function getContainer(oledIns) {
return new Adapter(oledIns);
}
到这一步,就可以成功点亮屏幕啦,来看看效果~
效果展示
参考
将 React 渲染到嵌入式液晶屏
在树莓派上使用 SSD1306 OLED 屏幕
结语
完整代码已上传到Github,如果你觉得这个实践对你有启发/帮助,点个star吧~
Vue已经成功渲染到嵌入式液晶屏了,那下一步是不是可以考虑接个摇杆写个贪吃蛇游戏了~哈哈哈,这很"Javascript"。
"阅读式"的学习使我犯困,所以我更倾向通过一些有趣的实践吸收知识。如果你和我一样爱折腾,欢迎关注~
- 上一篇:Vue3 要起飞了!响应式性能超级大提升!
- 下一篇:Vue3基础难点总结
相关推荐
- 机器学习分类模型评估(三)-F值(F-Measure)、AUC、P-R曲线
-
概述上二篇文章分别讲述了准确率(accuracy)、精确率(Precision)、查准类、召回率(Recall)、查全率、ROC曲线,本文讲述机器学习分类模型评估中的F值(F-Measure)、AUC...
- SPSS ROC曲线诊断临界值确定
-
ROC曲线是在临床医学和流行病学研究中一种常用的在诊断试验、预测模型中用于决定最佳临界点的方法。ROC曲线用真阳性率和假阳性率作图得出曲线,其横轴表示假阳性率(1-特异度),纵轴表示真阳性率(灵敏度)...
- 分类器模型检测--ROC曲线和AUC值
-
在监督学习建模中有一个重要的模块是模块的检测,就是怎样判断一个模型的好坏?那么常用的的检测的指标有P值、R值、F值、ROC曲线、AUC值等,今天来学习他们都是怎么来的,有什么用处。这里为二分类问题,即...
- 【Python机器学习系列】建立梯度提升模型预测心脏疾病
-
这是Python机器学习系列原创文章,我的第204篇原创文章。一、引言对于表格数据,一套完整的机器学习建模流程如下:针对不同的数据集,有些步骤不适用即不需要做,其中橘红色框为必要步骤,由于数据质量较高...
- 如何Keras自动编码器给极端罕见事件分类
-
全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...
- 机器学习分类问题:9个常用的评估指标总结
-
对机器学习的评估度量是机器学习核心部分,本文总结分类问题常用的metrics分类问题评估指标在这里,将讨论可用于评估分类问题预测的各种性能指标1ConfusionMatrix这是衡量分类问题性能的...
- 基于R语言的ROC曲线绘制及最佳阈值点(Cutoff)选择
-
ROC曲线在介绍ROC曲线之前,我们首先需要介绍混淆矩阵(ConfusionMatrix)。在统计分类模型的评估过程中分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来的表格...
- R数据分析:多分类问题预测模型的ROC做法及解释
-
有同学做了个多分类的预测模型,结局有三个类别,做的模型包括多分类逻辑回归、随机森林和决策树,多分类逻辑回归是用ROC曲线并报告AUC作为模型评估的,后面两种模型报告了混淆矩阵,审稿人就提出要统一模型评...
- SPSS实战:多个指标ROC曲线方向不一致的解决办法汇总(收藏)
-
在诊断实验和预测模型的临床效能评价中,我们常常用到ROC曲线分析。在SPSS中绘制ROC曲线操作比较简单,但如果将多个指标的ROC曲线绘制在同一个图中,有时候会碰到有些指标的ROC曲线在对角线上面,一...
- 小果教你快速分析ROC生存曲线图
-
尔云间一个专门做科研的团队原创小果生信果小伙伴们,大家好呀,很高兴和大家见面,前段时间应小伙伴出的解读ROC曲线图,小伙伴反应很是积极,这不最近小伙伴对于不同年份的ROC曲线图的分析呼声很高,...
- 生信文章中高频出现、模型评估必备分析——ROC曲线图,怎么看?
-
尔云间一个专门做科研的团队关注我们做了生信分析,拿到一堆数据,看不懂图怎么办?火山图、热图、散点图、箱线图、瀑布图···这么多类型的图都咋看?风险模型预后评估图、GO-KEGG富集分析图、GSEA...
- 如何看懂文献里那些图——ROC曲线图
-
ROC曲线的基本思想是把敏感度和特异性看作一个连续变化的过程,用一条曲线描述诊断系统的性能,其制作原理是在连续变量中不同界值点处计算相对应的灵敏度和特异度,然后以敏感度为纵坐标、1-特异性为横坐标绘制...
- 超强,必会的机器学习评估指标
-
大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...
- 准确性检验 (ROC曲线)的SPSS操作教程及结果解读
-
作者/风仕在上一期,我们已经讲完了诊断试验的基础知识,这期开始讲准确性检验(ROC曲线),我们主要从准确性检验(ROC曲线)的介绍、基本概念、绘制原理、统计量、使用条件及案例的SPSS操作演示这几...
- SPSS:ROC 曲线为什么反了?
-
【作者介绍】李志辉,长期从事各类统计软件应用研究,主编或参编SPSS、MINITAB、STATISTICA多个统计软件教材共8本。代表作:电子工业出版社《SPSS常用统计分析教程(SPSS22.0中...
- 一周热门
- 最近发表
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- resize函数 (64)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- mybatis大于等于 (64)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- skip-name-resolve (63)
- linuxlink (65)
- httperror403.14-forbidden (63)
- logstashinput (65)
- hadoop端口 (65)
- vue阻止冒泡 (67)
- oracle时间戳转换日期 (64)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)