百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

Vue3基础难点总结

bigegpt 2025-05-26 13:53 5 浏览

区别

生命周期的变化

整体来看,变化不大,只是名字大部分需要 + on,功能上类似。使用上 Vue3 组合式 API 需要先引入;Vue2 选项 API 则可直接调用,如下所示。

// vue3
<script setup>     
import { onMounted } from 'vue'

onMounted(() => {
  ...
})
// 可将不同的逻辑拆开成多个onMounted,依然按顺序执行,不被覆盖
onMounted(() => {
  ...
})
</script>

// vue2
<script>     
   export default {         
      mounted() {             
        ...         
      },           
   }
</script> 

常用生命周期表格如下所示。

Vue2.xVue3beforeCreateNot needed*createdNot needed*beforeMountonBeforeMountmountedonMountedbeforeUpdateonBeforeUpdateupdatedonUpdatedbeforeDestroyonBeforeUnmountdestroyedonUnmounted

Tips: setup是围绕beforeCreatecreated生命周期钩子运行的,所以不需要显式地去定义。

多根节点

Vue3 支持了多根节点组件,也就是fragment

Vue2中,编写页面的时候,我们需要去将组件包裹在<div>中,否则报错警告。

<template>
  <div>
    <header>...</header>
    <main>...</main>
    <footer>...</footer>
  </div>
</template>

Vue3,我们可以组件包含多个根节点,可以少写一层,niceeee !

<template>
  <header>...</header>
  <main>...</main>
  <footer>...</footer>
</template>

异步组件

Vue3 提供 Suspense组件,允许程序在等待异步组件时渲染兜底的内容,如 loading ,使用户体验更平滑。使用它,需在模板中声明,并包括两个命名插槽:defaultfallbackSuspense确保加载完异步内容时显示默认插槽,并将fallback插槽用作加载状态。

<tempalte>
   <suspense>
     <template #default>
       <todo-list />
     </template>
     <template #fallback>
       <div>
         Loading...
       </div>
     </template>
   </suspense>
</template>

真实的项目中踩过坑,若想在 setup 中调用异步请求,需在 setup 前加async关键字。这时,会受到警告async setup() is used without a suspense boundary

解决方案:在父页面调用当前组件外包裹一层Suspense组件。

Teleport

Vue3 提供Teleport组件可将部分DOM移动到 Vue app之外的位置。比如项目中常见的Dialog组件。

<button @click="dialogVisible = true">点击</button>
<teleport to="body">
   <div class="dialog" v-if="dialogVisible">
   </div>
</teleport>

组合式API

Vue2 是 选项式API(Option API),一个逻辑会散乱在文件不同位置(data、props、computed、watch、生命周期函数等),导致代码的可读性变差,需要上下来回跳转文件位置。Vue3 组合式API(Composition API)则很好地解决了这个问题,可将同一逻辑的内容写到一起。

除了增强了代码的可读性、内聚性,组合式API 还提供了较为完美的逻辑复用性方案,举个,如下所示公用鼠标坐标案例。

// main.vue
<template>
  <span>mouse position {{x}} {{y}}</span>
</template>

<script setup>
import { ref } from 'vue'
import useMousePosition from './useMousePosition'

const {x, y} = useMousePosition()

}
</script>
// useMousePosition.js
import { ref, onMounted, onUnmounted } from 'vue'

function useMousePosition() {
  let x = ref(0)
  let y = ref(0)
  
  function update(e) {
    x.value = e.pageX
    y.value = e.pageY
  }
  
  onMounted(() => {
    window.addEventListener('mousemove', update)
  })
  
  onUnmounted(() => {
    window.removeEventListener('mousemove', update)
  })
  
  return {
    x,
    y
  }
}
</script>

解决了 Vue2 Mixin的存在的命名冲突隐患,依赖关系不明确,不同组件间配置化使用不够灵活。

响应式原理

Vue2 响应式原理基础是Object.defineProperty;Vue3 响应式原理基础是 Proxy

Object.defineProperty

基本用法:直接在一个对象上定义新的属性或修改现有的属性,并返回对象。

Tips: writablevaluegettersetter 不共存。

let obj = {}
let name = '瑾行'
Object.defineProperty(obj, 'name', {
  enumerable: true, // 可枚举(是否可通过for...in 或 Object.keys()进行访问)
  configurable: true, // 可配置(是否可使用delete删除,是否可再次设置属性)
  // value: '', // 任意类型的值,默认undefined
  // writable: true, // 可重写
  get: function() {
    return name
  },
  set: function(value) {
    name = value
  }
})

搬运 Vue2 核心源码,略删减。

function defineReactive(obj, key, val) {
  // 一 key 一个 dep
  const dep = new Dep()
  
  // 获取 key 的属性描述符,发现它是不可配置对象的话直接 return
  const property = Object.getOwnPropertyDescriptor(obj, key)
  if (property && property.configurable === false) { return }
  
  // 获取 getter 和 setter,并获取 val 值
  const getter = property && property.get
  const setter = property && property.set
  if((!getter || setter) && arguments.length === 2) { val = obj[key] }
  
  // 递归处理,保证对象中所有 key 被观察
  let childOb = observe(val)
  
  Object.defineProperty(obj, key, {
    enumerable: true,
    configurable: true,
    // get 劫持 obj[key] 的 进行依赖收集
    get: function reactiveGetter() {
      const value = getter ? getter.call(obj) : val
      if(Dep.target) {
        // 依赖收集
        dep.depend()
        if(childOb) {
          // 针对嵌套对象,依赖收集
          childOb.dep.depend()
          // 触发数组响应式
          if(Array.isArray(value)) {
            dependArray(value)
          }
        }
      }
    }
    return value
  })
  // set 派发更新 obj[key]
  set: function reactiveSetter(newVal) {
    ...
    if(setter) {
      setter.call(obj, newVal)
    } else {
      val = newVal
    }
    // 新值设置响应式
    childOb = observe(val)
    // 依赖通知更新
    dep.notify()
  }
}

那 Vue3 为何会抛弃它呢?那肯定是有一些缺陷的。

主要原因:无法监听对象或数组新增、删除的元素。Vue2 方案:针对常用数组原型方法pushpopshiftunshiftsplicesortreverse进行了hack处理;提供Vue.set监听对象/数组新增属性。对象的新增/删除响应,还可以new个新对象,新增则合并新属性和旧对象;删除则将删除属性后的对象深拷贝给新对象。

Tips: Object.defineOProperty是可以监听数组已有元素,但 Vue2 没有提供的原因是性能问题,具体可看见参考第二篇 ~。

Proxy

Proxy是ES6新特性,通过第2个参数handler拦截目标对象的行为。相较于Object.defineProperty提供语言全范围的响应能力,消除了局限性。但在兼容性上放弃了(IE11以下)

局限性

  1. 对象/数组的新增、删除。
  2. 监测.length修改。
  3. Map、Set、WeakMap、WeakSet的支持。

基本用法:创建对象的代理,从而实现基本操作的拦截和自定义操作。

const handler = {
  get: function(obj, prop) {
    return prop in obj ? obj[prop] : ''
  },
  set: function() {},
  ...
}

搬运 Vue3 的源码 reactive.ts 文件

function createReactiveObject(target, isReadOnly, baseHandlers, collectionHandlers, proxyMap) {
  ...
  // collectionHandlers: 处理Map、Set、WeakMap、WeakSet
  // baseHandlers: 处理数组、对象
  const proxy = new Proxy(
    target,
    targetType === TargetType.COLLECTION ? collectionHandlers : baseHandlers
  )
  proxyMap.set(target, proxy)
  return proxy
}

以 baseHandlers.ts 为例,使用Reflect.get而不是target[key]的原因是receiver参数可以把this指向getter调用时,而非Proxy构造时的对象。

// 依赖收集
function createGetter(isReadonly = false, shallow = false) {
  return function get(target: Target, key: string | symbol, receiver: object) {
    ...
    // 数组类型
    const targetIsArray = isArray(target)
    if (!isReadonly && targetIsArray && hasOwn(arrayInstrumentations, key)) {
      return Reflect.get(arrayInstrumentations, key, receiver)
    }
    // 非数组类型
    const res = Reflect.get(target, key, receiver);
    
    // 对象递归调用
    if (isObject(res)) {
      return isReadonly ? readonly(res) : reactive(res)
    }

    return res
  }
}
// 派发更新
function createSetter() {
  return function set(target: Target, key: string | symbol, value: unknown, receiver: Object) {
    value = toRaw(value)
    oldValue = target[key]
    // 因 ref 数据在 set value 时就已 trigger 依赖了,所以直接赋值 return 即可
    if (!isArray(target) && isRef(oldValue) && !isRef(value)) {
      oldValue.value = value
      return true
    }

    // 对象是否有 key 有 key set,无 key add
    const hadKey = hasOwn(target, key)
    const result = Reflect.set(target, key, value, receiver)
    
    if (target === toRaw(receiver)) {
      if (!hadKey) {
        trigger(target, TriggerOpTypes.ADD, key, value)
      } else if (hasChanged(value, oldValue)) {
        trigger(target, TriggerOpTypes.SET, key, value, oldValue)
      }
    }
    return result
  }
}

虚拟DOM

Vue3 相比于 Vue2 虚拟DOM 上增加patchFlag字段。我们借助Vue3 Template Explorer来看。

<div id="app">
  <h1>技术摸鱼</h1>
  <p>今天天气真不错</p>
  <div>{{name}}</div>
</div>

渲染函数如下。

import { createElementVNode as _createElementVNode, toDisplayString as _toDisplayString, openBlock as _openBlock, createElementBlock as _createElementBlock, pushScopeId as _pushScopeId, popScopeId as _popScopeId } from "vue"

const _withScopeId = n => (_pushScopeId("scope-id"),n=n(),_popScopeId(),n)
const _hoisted_1 = { id: "app" }
const _hoisted_2 = /*#__PURE__*/ _withScopeId(() => /*#__PURE__*/_createElementVNode("h1", null, "技术摸鱼", -1 /* HOISTED */))
const _hoisted_3 = /*#__PURE__*/ _withScopeId(() => /*#__PURE__*/_createElementVNode("p", null, "今天天气真不错", -1 /* HOISTED */))

export function render(_ctx, _cache, $props, $setup, $data, $options) {
  return (_openBlock(), _createElementBlock("div", _hoisted_1, [
    _hoisted_2,
    _hoisted_3,
    _createElementVNode("div", null, _toDisplayString(_ctx.name), 1 /* TEXT */)
  ]))
}

注意第 3 个_createElementVNode的第 4 个参数即patchFlag字段类型,字段类型情况如下所示。1 代表节点为动态文本节点,那在 diff 过程中,只需比对文本对容,无需关注 class、style等。除此之外,发现所有的静态节点,都保存为一个变量进行静态提升,可在重新渲染时直接引用,无需重新创建。

export const enum PatchFlags { 
  TEXT = 1, // 动态文本内容
  CLASS = 1 << 1, // 动态类名
  STYLE = 1 << 2, // 动态样式
  PROPS = 1 << 3, // 动态属性,不包含类名和样式
  FULL_PROPS = 1 << 4, // 具有动态 key 属性,当 key 改变,需要进行完整的 diff 比较
  HYDRATE_EVENTS = 1 << 5, // 带有监听事件的节点
  STABLE_FRAGMENT = 1 << 6, // 不会改变子节点顺序的 fragment
  KEYED_FRAGMENT = 1 << 7, // 带有 key 属性的 fragment 或部分子节点
  UNKEYED_FRAGMENT = 1 << 8,  // 子节点没有 key 的fragment
  NEED_PATCH = 1 << 9, // 只会进行非 props 的比较
  DYNAMIC_SLOTS = 1 << 10, // 动态的插槽
  HOISTED = -1,  // 静态节点,diff阶段忽略其子节点
  BAIL = -2 // 代表 diff 应该结束
}

事件缓存

Vue3 的 cacheHandler可在第一次渲染后缓存我们的事件。相比于 Vue2 无需每次渲染都传递一个新函数。加一个click事件。

<div id="app">
  <h1>技术摸鱼</h1>
  <p>今天天气真不错</p>
  <div>{{name}}</div>
  <span onCLick="() => {}"><span>
</div>

渲染函数如下

import { createElementVNode as _createElementVNode, toDisplayString as _toDisplayString, openBlock as _openBlock, createElementBlock as _createElementBlock, pushScopeId as _pushScopeId, popScopeId as _popScopeId } from "vue"

const _withScopeId = n => (_pushScopeId("scope-id"),n=n(),_popScopeId(),n)
const _hoisted_1 = { id: "app" }
const _hoisted_2 = /*#__PURE__*/ _withScopeId(() => /*#__PURE__*/_createElementVNode("h1", null, "技术摸鱼", -1 /* HOISTED */))
const _hoisted_3 = /*#__PURE__*/ _withScopeId(() => /*#__PURE__*/_createElementVNode("p", null, "今天天气真不错", -1 /* HOISTED */))
const _hoisted_4 = /*#__PURE__*/ _withScopeId(() => /*#__PURE__*/_createElementVNode("span", { onCLick: "() => {}" }, [
  /*#__PURE__*/_createElementVNode("span")
], -1 /* HOISTED */))

export function render(_ctx, _cache, $props, $setup, $data, $options) {
  return (_openBlock(), _createElementBlock("div", _hoisted_1, [
    _hoisted_2,
    _hoisted_3,
    _createElementVNode("div", null, _toDisplayString(_ctx.name), 1 /* TEXT */),
    _hoisted_4
  ]))
}

Diff 优化

搬运 Vue3 patchChildren 源码。结合上文与源码,patchFlag帮助 diff 时区分静态节点,以及不同类型的动态节点。一定程度地减少节点本身及其属性的比对。

function patchChildren(n1, n2, container, parentAnchor, parentComponent, parentSuspense, isSVG, optimized) {
  // 获取新老孩子节点
  const c1 = n1 && n1.children
  const c2 = n2.children
  const prevShapeFlag = n1 ? n1.shapeFlag : 0
  const { patchFlag, shapeFlag } = n2
  
  // 处理 patchFlag 大于 0 
  if(patchFlag > 0) {
    if(patchFlag && PatchFlags.KEYED_FRAGMENT) {
      // 存在 key
      patchKeyedChildren()
      return
    } els if(patchFlag && PatchFlags.UNKEYED_FRAGMENT) {
      // 不存在 key
      patchUnkeyedChildren()
      return
    }
  }
  
  // 匹配是文本节点(静态):移除老节点,设置文本节点
  if(shapeFlag && ShapeFlags.TEXT_CHILDREN) {
    if (prevShapeFlag & ShapeFlags.ARRAY_CHILDREN) {
      unmountChildren(c1 as VNode[], parentComponent, parentSuspense)
    }
    if (c2 !== c1) {
      hostSetElementText(container, c2 as string)
    }
  } else {
    // 匹配新老 Vnode 是数组,则全量比较;否则移除当前所有的节点
    if (prevShapeFlag & ShapeFlags.ARRAY_CHILDREN) {
      if (shapeFlag & ShapeFlags.ARRAY_CHILDREN) {
        patchKeyedChildren(c1, c2, container, anchor, parentComponent, parentSuspense,...)
      } else {
        unmountChildren(c1 as VNode[], parentComponent, parentSuspense, true)
      }
    } else {
      
      if(prevShapeFlag & ShapeFlags.TEXT_CHILDREN) {
        hostSetElementText(container, '')
      } 
      if (shapeFlag & ShapeFlags.ARRAY_CHILDREN) {
        mountChildren(c2 as VNodeArrayChildren, container,anchor,parentComponent,...)
      }
    }
  }
}

patchUnkeyedChildren 源码如下。

function patchUnkeyedChildren(c1, c2, container, parentAnchor, parentComponent, parentSuspense, isSVG, optimized) {
  c1 = c1 || EMPTY_ARR
  c2 = c2 || EMPTY_ARR
  const oldLength = c1.length
  const newLength = c2.length
  const commonLength = Math.min(oldLength, newLength)
  let i
  for(i = 0; i < commonLength; i++) {
    // 如果新 Vnode 已经挂载,则直接 clone 一份,否则新建一个节点
    const nextChild = (c2[i] = optimized ? cloneIfMounted(c2[i] as Vnode)) : normalizeVnode(c2[i])
    patch()
  }
  if(oldLength > newLength) {
    // 移除多余的节点
    unmountedChildren()
  } else {
    // 创建新的节点
    mountChildren()
  }
  
}

patchKeyedChildren源码如下,有运用最长递增序列的算法思想。

function patchKeyedChildren(c1, c2, container, parentAnchor, parentComponent, parentSuspense, isSVG, optimized) {
  let i = 0;
  const e1 = c1.length - 1
  const e2 = c2.length - 1
  const l2 = c2.length
  
  // 从头开始遍历,若新老节点是同一节点,执行 patch 更新差异;否则,跳出循环 
  while(i <= e1 && i <= e2) {
    const n1 = c1[i]
    const n2 = c2[i]
    
    if(isSameVnodeType) {
      patch(n1, n2, container, parentAnchor, parentComponent, parentSuspense, isSvg, optimized)
    } else {
      break
    }
    i++
  }
  
  // 从尾开始遍历,若新老节点是同一节点,执行 patch 更新差异;否则,跳出循环 
  while(i <= e1 && i <= e2) {
    const n1 = c1[e1]
    const n2 = c2[e2]
    if(isSameVnodeType) {
      patch(n1, n2, container, parentAnchor, parentComponent, parentSuspense, isSvg, optimized)
    } else {
      break
    }
    e1--
    e2--
  }
  
  // 仅存在需要新增的节点
  if(i > e1) {    
    if(i <= e2) {
      const nextPos = e2 + 1
      const anchor = nextPos < l2 ? c2[nextPos] : parentAnchor
      while(i <= e2) {
        patch(null, c2[i], container, parentAnchor, parentComponent, parentSuspense, isSvg, optimized)
      }
    }
  }
  
  // 仅存在需要删除的节点
  else if(i > e2) {
    while(i <= e1) {
      unmount(c1[i], parentComponent, parentSuspense, true)    
    }
  }
  
  // 新旧节点均未遍历完
  // [i ... e1 + 1]: a b [c d e] f g
  // [i ... e2 + 1]: a b [e d c h] f g
  // i = 2, e1 = 4, e2 = 5
  else {
    const s1 = i
    const s2 = i
    // 缓存新 Vnode 剩余节点 上例即{e: 2, d: 3, c: 4, h: 5}
    const keyToNewIndexMap = new Map()
    for (i = s2; i <= e2; i++) {
      const nextChild = (c2[i] = optimized
          ? cloneIfMounted(c2[i] as VNode)
          : normalizeVNode(c2[i]))
      
      if (nextChild.key != null) {
        if (__DEV__ && keyToNewIndexMap.has(nextChild.key)) {
          warn(
            `Duplicate keys found during update:`,
             JSON.stringify(nextChild.key),
            `Make sure keys are unique.`
          )
        }
        keyToNewIndexMap.set(nextChild.key, i)
      }
    }
  }
  
  let j = 0
  // 记录即将 patch 的 新 Vnode 数量
  let patched = 0
  // 新 Vnode 剩余节点长度
  const toBePatched = e2 - s2 + 1
  // 是否移动标识
  let moved = false
  let maxNewindexSoFar = 0
  
  // 初始化 新老节点的对应关系(用于后续最大递增序列算法)
  const newIndexToOldIndexMap = new Array(toBePatched)
  for (i = 0; i < toBePatched; i++) newIndexToOldIndexMap[i] = 0
  
  // 遍历老 Vnode 剩余节点
  for (i = s1; i <= e1; i++) {
    const prevChild = c1[i]
    
    // 代表当前新 Vnode 都已patch,剩余旧 Vnode 移除即可
    if (patched >= toBePatched) {
      unmount(prevChild, parentComponent, parentSuspense, true)
      continue
    }
    
    let newIndex
    // 旧 Vnode 存在 key,则从 keyToNewIndexMap 获取
    if (prevChild.key != null) {
      newIndex = keyToNewIndexMap.get(prevChild.key)
    // 旧 Vnode 不存在 key,则遍历新 Vnode 获取
    } else {
      for (j = s2; j <= e2; j++) {
        if (newIndexToOldIndexMap[j - s2] === 0 && isSameVNodeType(prevChild, c2[j] as VNode)){
           newIndex = j
           break
        }
      }           
   }
   
   // 删除、更新节点
   // 新 Vnode 没有 当前节点,移除
   if (newIndex === undefined) {
     unmount(prevChild, parentComponent, parentSuspense, true)
   } else {
     // 旧 Vnode 的下标位置 + 1,存储到对应 新 Vnode 的 Map 中
     // + 1 处理是为了防止数组首位下标是 0 的情况,因为这里的 0 代表需创建新节点
     newIndexToOldIndexMap[newIndex - s2] = i + 1
     
     // 若不是连续递增,则代表需要移动
     if (newIndex >= maxNewIndexSoFar) {
       maxNewIndexSoFar = newIndex
     } else {
       moved = true
     }
     
     patch(prevChild,c2[newIndex],...)
     patched++
   }
  }
  
  // 遍历结束,newIndexToOldIndexMap = {0:5, 1:4, 2:3, 3:0}
  // 新建、移动节点
  const increasingNewIndexSequence = moved
  // 获取最长递增序列
  ? getSequence(newIndexToOldIndexMap)
  : EMPTY_ARR
  
  j = increasingNewIndexSequence.length - 1

  for (i = toBePatched - 1; i >= 0; i--) {
    const nextIndex = s2 + i
    const nextChild = c2[nextIndex] as VNode
    const anchor = extIndex + 1 < l2 ? (c2[nextIndex + 1] as VNode).el : parentAnchor
    // 0 新建 Vnode
    if (newIndexToOldIndexMap[i] === 0) {
      patch(null,nextChild,...)
    } else if (moved) {
      // 移动节点
      if (j < 0 || i !== increasingNewIndexSequence[j]) {
        move(nextChild, container, anchor, MoveType.REORDER)
      } else {
        j--
      }
    }
  }
}

打包优化

tree-shaking:模块打包webpackrollup等中的概念。移除 JavaScript 上下文中未引用的代码。主要依赖于importexport语句,用来检测代码模块是否被导出、导入,且被 JavaScript 文件使用。

nextTick为例子,在 Vue2 中,全局 API 暴露在 Vue 实例上,即使未使用,也无法通过tree-shaking进行消除。

import Vue from 'vue'

Vue.nextTick(() => {
  // 一些和DOM有关的东西
})

Vue3 中针对全局 和内部的API进行了重构,并考虑到tree-shaking的支持。因此,全局 API 现在只能作为ES模块构建的命名导出进行访问。

import { nextTick } from 'vue'

nextTick(() => {
  // 一些和DOM有关的东西
})

通过这一更改,只要模块绑定器支持tree-shaking,则 Vue 应用程序中未使用的api将从最终的捆绑包中消除,获得最佳文件大小。受此更改影响的全局API有如下。

  • Vue.nextTick
  • Vue.observable (用 Vue.reactive 替换)
  • Vue.version
  • Vue.compile (仅全构建)
  • Vue.set (仅兼容构建)
  • Vue.delete (仅兼容构建)

内部 API 也有诸如 transition、v-model等标签或者指令被命名导出。只有在程序真正使用才会被捆绑打包。

根据 尤大 直播可以知道如今 Vue3 将所有运行功能打包也只有22.5kb,比 Vue2 轻量很多。

自定义渲染API

Vue3 提供的createApp默认是将 template 映射成 html。但若想生成canvas时,就需要使用custom renderer api自定义render生成函数。

// 自定义runtime-render函数
import { createApp } from './runtime-render'
import App from './src/App'

createApp(App).mount('#app')

TypeScript 支持

Vue3 由TS重写,相对于 Vue2 有更好地TypeScript支持。

  • Vue2 Option API中 option 是个简单对象,而TS是一种类型系统,面向对象的语法,不是特别匹配。
  • Vue2 需要vue-class-component强化vue原生组件,也需要vue-property-decorator增加更多结合Vue特性的装饰器,写法比较繁琐。

周边

列举一些 Vue3 配套产物,具体Composition API新语法可见官方迁移文档,参考中有链接~ 。

  • vue-cli 4.5.0
  • Vue Router 4.0
  • Vuex 4.0
  • Element plus
  • Vite

相关推荐

机器学习分类模型评估(三)-F值(F-Measure)、AUC、P-R曲线

概述上二篇文章分别讲述了准确率(accuracy)、精确率(Precision)、查准类、召回率(Recall)、查全率、ROC曲线,本文讲述机器学习分类模型评估中的F值(F-Measure)、AUC...

SPSS ROC曲线诊断临界值确定

ROC曲线是在临床医学和流行病学研究中一种常用的在诊断试验、预测模型中用于决定最佳临界点的方法。ROC曲线用真阳性率和假阳性率作图得出曲线,其横轴表示假阳性率(1-特异度),纵轴表示真阳性率(灵敏度)...

分类器模型检测--ROC曲线和AUC值

在监督学习建模中有一个重要的模块是模块的检测,就是怎样判断一个模型的好坏?那么常用的的检测的指标有P值、R值、F值、ROC曲线、AUC值等,今天来学习他们都是怎么来的,有什么用处。这里为二分类问题,即...

【Python机器学习系列】建立梯度提升模型预测心脏疾病

这是Python机器学习系列原创文章,我的第204篇原创文章。一、引言对于表格数据,一套完整的机器学习建模流程如下:针对不同的数据集,有些步骤不适用即不需要做,其中橘红色框为必要步骤,由于数据质量较高...

如何Keras自动编码器给极端罕见事件分类

全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...

机器学习分类问题:9个常用的评估指标总结

对机器学习的评估度量是机器学习核心部分,本文总结分类问题常用的metrics分类问题评估指标在这里,将讨论可用于评估分类问题预测的各种性能指标1ConfusionMatrix这是衡量分类问题性能的...

基于R语言的ROC曲线绘制及最佳阈值点(Cutoff)选择

ROC曲线在介绍ROC曲线之前,我们首先需要介绍混淆矩阵(ConfusionMatrix)。在统计分类模型的评估过程中分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来的表格...

R数据分析:多分类问题预测模型的ROC做法及解释

有同学做了个多分类的预测模型,结局有三个类别,做的模型包括多分类逻辑回归、随机森林和决策树,多分类逻辑回归是用ROC曲线并报告AUC作为模型评估的,后面两种模型报告了混淆矩阵,审稿人就提出要统一模型评...

SPSS实战:多个指标ROC曲线方向不一致的解决办法汇总(收藏)

在诊断实验和预测模型的临床效能评价中,我们常常用到ROC曲线分析。在SPSS中绘制ROC曲线操作比较简单,但如果将多个指标的ROC曲线绘制在同一个图中,有时候会碰到有些指标的ROC曲线在对角线上面,一...

小果教你快速分析ROC生存曲线图

尔云间一个专门做科研的团队原创小果生信果小伙伴们,大家好呀,很高兴和大家见面,前段时间应小伙伴出的解读ROC曲线图,小伙伴反应很是积极,这不最近小伙伴对于不同年份的ROC曲线图的分析呼声很高,...

生信文章中高频出现、模型评估必备分析——ROC曲线图,怎么看?

尔云间一个专门做科研的团队关注我们做了生信分析,拿到一堆数据,看不懂图怎么办?火山图、热图、散点图、箱线图、瀑布图···这么多类型的图都咋看?风险模型预后评估图、GO-KEGG富集分析图、GSEA...

如何看懂文献里那些图——ROC曲线图

ROC曲线的基本思想是把敏感度和特异性看作一个连续变化的过程,用一条曲线描述诊断系统的性能,其制作原理是在连续变量中不同界值点处计算相对应的灵敏度和特异度,然后以敏感度为纵坐标、1-特异性为横坐标绘制...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

准确性检验 (ROC曲线)的SPSS操作教程及结果解读

作者/风仕在上一期,我们已经讲完了诊断试验的基础知识,这期开始讲准确性检验(ROC曲线),我们主要从准确性检验(ROC曲线)的介绍、基本概念、绘制原理、统计量、使用条件及案例的SPSS操作演示这几...

SPSS:ROC 曲线为什么反了?

【作者介绍】李志辉,长期从事各类统计软件应用研究,主编或参编SPSS、MINITAB、STATISTICA多个统计软件教材共8本。代表作:电子工业出版社《SPSS常用统计分析教程(SPSS22.0中...