百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

MATLAB常见分布的参数估计

bigegpt 2024-09-09 01:14 18 浏览

参数估计:

在很多实际问题中,为了进行某些统计推断,需要确定总体服从的分布,通常根据问题的实际背景或适当的统计方法可以判断总体分布的类型,但是总体分布中往往含有未知参数,需要用样本观测数据进行估计。即根据已有的数据来估算数分布函数中的参数的值。例如,某门课程的考试成绩服从正态分布N(u,a^2),其中u和a是未知的参数,就需要用样本观测数据来进行估计出u和a的值。

假设检验:

假设检验的基本任务是根据样本所提供的信息,对总体的某些方面(如总体的分布类型,参数的性质)做出判断。

1.参数估计

1.1 常见分布的参数估计

(一)

MATLAB统计工具箱中有这样一系列函数,函数名以fit三个字符串结尾,这些函数用来求常见分布的参数的最大似然估计和置信区间估计。

(最大似然估计,只是一种概率论在统计学的应用,它是参数估计的方法之一。说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干 次试验,观察其结果,利用结果推出参数的大概值。

置信区间:展现的是这个参数的真实值有一定概率落在测量结果的周围的程度。置信区间给出的是被测量参数的测量值的可信程度,即前面所要求的“一定概率”。这个概率被称为置信水平

置信区间的两端被称为置信极限。对一个给定情形的估计来说,置信水平越高,所对应的置信区间就会越大。

α是显著性水平(例:0.05或0.10)

100%*(1-α)指置信水平(例:95%或90%)

函数名

调 用 形 式函 数 说 明
binofitPHAT= binofit(X, N)[PHAT, PCI] = binofit(X,N)[PHAT, PCI]= binofit (X, N, ALPHA)二项分布的概率的最大似然估计置信度为95%的参数估计和置信区间返回水平α的参数估计和置信区间
poissfitLambdahat=poissfit(X)[Lambdahat, Lambdaci] = poissfit(X)[Lambdahat, Lambdaci]= poissfit (X, ALPHA)泊松分布的参数的最大似然估计置信度为95%的参数估计和置信区间返回水平α的λ参数和置信区间
normfit[muhat,sigmahat,muci,sigmaci] = normfit(X)[muhat,sigmahat,muci,sigmaci] = normfit(X, ALPHA)正态分布的最大似然估计,置信度为95%返回水平α的期望、方差值和置信区间
betafitPHAT =betafit (X)[PHAT, PCI]= betafit (X, ALPHA)返回β分布参数a和 b的最大似然估计返回最大似然估计值和水平α的置信区间
unifit[ahat,bhat] = unifit(X)[ahat,bhat,ACI,BCI] = unifit(X)[ahat,bhat,ACI,BCI]=unifit(X, ALPHA)均匀分布参数的最大似然估计置信度为95%的参数估计和置信区间返回水平α的参数估计和置信区间
expfitmuhat =expfit(X)[muhat,muci] = expfit(X)[muhat,muci] = expfit(X,alpha)指数分布参数的最大似然估计置信度为95%的参数估计和置信区间返回水平α的参数估计和置信区间
gamfitphat =gamfit(X)[phat,pci] = gamfit(X)[phat,pci] = gamfit(X,alpha)γ分布参数的最大似然估计置信度为95%的参数估计和置信区间返回最大似然估计值和水平α的置信区间
weibfitphat = weibfit(X)[phat,pci] = weibfit(X)[phat,pci] = weibfit(X,alpha)韦伯分布参数的最大似然估计置信度为95%的参数估计和置信区间返回水平α的参数估计及其区间估计
Mlephat = mle(data,Name,Value)phat = mle(data,‘distribution’,dist)[phat,pci] = mle(........,'alpha',p1)[phat,pci] = mle(data,'pdf',pdffun,'start',start,'alpha',p1)分布函数名为dist的最大似然估计置信度为95%的参数估计和置信区间返回水平α的最大似然估计值和置信区间仅用于二项分布,pl为试验总次数

例:若已知数据x=[15.14 14.81 15.11 15.26 15.08 15.17 15.12 14.95 15.05 14.87]

服从正态分布N(u,a^2),其中u,a未知,通过已有的数据x,求u和a的最大似然估计和置信水平为90%的置信区间。

对于normfit函数,调用格式

[muhat,sigmahat,muci,sigmaci] = normfit(X, ALPHA):

x是已知的数据

ALPHA为显著性水平(1-置信水平),默认是0.05

返回值muhat为均值的最大似然估计,muci为均值的置信区间

sigmahat为标准差的最大似然估计,sigmaci为标准差的置信区间

%定义样本观测值的向量,通过这些值来估计参数的值

x=[15.14 14.81 15.11 15.26 15.08 15.17 15.12 14.95 15.05 14.87];

%调用normfit函数求正态总体参数的最大似然估计和置信区间。

%返回总体均值的最大似然估计muhat和90%置信区间muci

%还返回总体标准差的最大似然估计sigmahat和90%置信区间sigmaci

[muhat,sigmahat,muci,sigmaci]=normfit(x,0.1) %置信水平为90%,则显著性水平=1-90%=0.1

muhat =

15.0560

sigmahat =

0.1397

muci =

14.9750

15.1370

sigmaci =

0.1019

0.2298

(二)

MATLAB统计工具箱中的mle函数可以用来根据样本观测值求指定分布参数的最大似然估计和置信区间。

%定义样本观测值的向量,通过这些值来估计参数的值

x=[15.14 14.81 15.11 15.26 15.08 15.17 15.12 14.95 15.05 14.87];

%调用mle函数求正态总体参数的最大似然空间和置信区间

%返回参数的最大似然估计mu_sigma和90%置信区间mu_sigma_ci

%因为有两个参数均值和标准差,所以返回的返回的最大似然估计是1x2的向量

%置信区间是2x2的矩阵

%需要指定函数名为norm(正态分布),显著性水平0.1(1-置信水平)

[mu_sigma,mu_sigma_ci]=mle(x,'distribution','norm','alpha',0.1)

mu_sigma =

15.0560 0.1325

mu_sigma_ci =

14.9750 0.1019

15.1370 0.2298

我们发现,通过normfit函数和mle函数求出的估计结果不完全相同,这是因为他们采用的算法不同,对于小样本(样本容量不超过30)的情况下,可以认为normfit函数的结果更可靠。

明天将发布MATLAB自定义分布的参数估计

相关推荐

当Frida来“敲”门(frida是什么)

0x1渗透测试瓶颈目前,碰到越来越多的大客户都会将核心资产业务集中在统一的APP上,或者对自己比较重要的APP,如自己的主业务,办公APP进行加壳,流量加密,投入了很多精力在移动端的防护上。而现在挖...

服务端性能测试实战3-性能测试脚本开发

前言在前面的两篇文章中,我们分别介绍了性能测试的理论知识以及性能测试计划制定,本篇文章将重点介绍性能测试脚本开发。脚本开发将分为两个阶段:阶段一:了解各个接口的入参、出参,使用Python代码模拟前端...

Springboot整合Apache Ftpserver拓展功能及业务讲解(三)

今日分享每天分享技术实战干货,技术在于积累和收藏,希望可以帮助到您,同时也希望获得您的支持和关注。架构开源地址:https://gitee.com/msxyspringboot整合Ftpserver参...

Linux和Windows下:Python Crypto模块安装方式区别

一、Linux环境下:fromCrypto.SignatureimportPKCS1_v1_5如果导包报错:ImportError:Nomodulenamed'Crypt...

Python 3 加密简介(python des加密解密)

Python3的标准库中是没多少用来解决加密的,不过却有用于处理哈希的库。在这里我们会对其进行一个简单的介绍,但重点会放在两个第三方的软件包:PyCrypto和cryptography上,我...

怎样从零开始编译一个魔兽世界开源服务端Windows

第二章:编译和安装我是艾西,上期我们讲述到编译一个魔兽世界开源服务端环境准备,那么今天跟大家聊聊怎么编译和安装我们直接进入正题(上一章没有看到的小伙伴可以点我主页查看)编译服务端:在D盘新建一个文件夹...

附1-Conda部署安装及基本使用(conda安装教程)

Windows环境安装安装介质下载下载地址:https://www.anaconda.com/products/individual安装Anaconda安装时,选择自定义安装,选择自定义安装路径:配置...

如何配置全世界最小的 MySQL 服务器

配置全世界最小的MySQL服务器——如何在一块IntelEdison为控制板上安装一个MySQL服务器。介绍在我最近的一篇博文中,物联网,消息以及MySQL,我展示了如果Partic...

如何使用Github Action来自动化编译PolarDB-PG数据库

随着PolarDB在国产数据库领域荣膺桂冠并持续获得广泛认可,越来越多的学生和技术爱好者开始关注并涉足这款由阿里巴巴集团倾力打造且性能卓越的关系型云原生数据库。有很多同学想要上手尝试,却卡在了编译数据...

面向NDK开发者的Android 7.0变更(ndk android.mk)

订阅Google官方微信公众号:谷歌开发者。与谷歌一起创造未来!受Android平台其他改进的影响,为了方便加载本机代码,AndroidM和N中的动态链接器对编写整洁且跨平台兼容的本机...

信创改造--人大金仓(Kingbase)数据库安装、备份恢复的问题纪要

问题一:在安装KingbaseES时,安装用户对于安装路径需有“读”、“写”、“执行”的权限。在Linux系统中,需要以非root用户执行安装程序,且该用户要有标准的home目录,您可...

OpenSSH 安全漏洞,修补操作一手掌握

1.漏洞概述近日,国家信息安全漏洞库(CNNVD)收到关于OpenSSH安全漏洞(CNNVD-202407-017、CVE-2024-6387)情况的报送。攻击者可以利用该漏洞在无需认证的情况下,通...

Linux:lsof命令详解(linux lsof命令详解)

介绍欢迎来到这篇博客。在这篇博客中,我们将学习Unix/Linux系统上的lsof命令行工具。命令行工具是您使用CLI(命令行界面)而不是GUI(图形用户界面)运行的程序或工具。lsoflsof代表&...

幻隐说固态第一期:固态硬盘接口类别

前排声明所有信息来源于网络收集,如有错误请评论区指出更正。废话不多说,目前固态硬盘接口按速度由慢到快分有这几类:SATA、mSATA、SATAExpress、PCI-E、m.2、u.2。下面我们来...

新品轰炸 影驰SSD多款产品登Computex

分享泡泡网SSD固态硬盘频道6月6日台北电脑展作为全球第二、亚洲最大的3C/IT产业链专业展,吸引了众多IT厂商和全球各地媒体的热烈关注,全球存储新势力—影驰,也积极参与其中,为广大玩家朋友带来了...