百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

MATLAB实现kmeans聚类实例加程序

bigegpt 2024-09-09 01:14 7 浏览

K-means算法是一种迭代求解的聚类分析算法,是在聚类算法中运用最为广泛的算法。它将数据分为了K组,随机选取K个对象。同时计算出对象和子对象之间的距离,把每个对象分配都距离最近的数据中心。通过数据,对于对象进行分类,从而进行针对不同对象的处理方案。在目前的分类应用中,K-means聚类算法应用广泛。MATLAB有自带的kmeans函数,能够实现聚类。具体语法如下:

kmeans函数

k 均值聚类
语法
idx=kmeans(X,k)
idx=kmeans(X,k,Name,Value)
[idx,C]=kmeans(___)
[idx,C,sumd]=kmeans(___)
[idx,C,sumd,D]=kmeans(___)
说明
idx=kmeans(X,k) 执行 k 均值聚类,以将 n×p 数据矩阵 X 的观测值划分为 k 个聚类,
并返回包含每个观测值的簇索引的 n×1 向量 (idx)。X 的行对应于点,列对应于变量。
默认情况下,kmeans 使用欧几里德距离平方度量,并用 k-means++ 算法进行簇中心初始化。
idx=kmeans(X,k,Name,Value) 进一步按一个或多个 Name,Value 对组参数所指定的附加选项
返回簇索引。
例如,指定余弦距离、使用新初始值重复聚类的次数或使用并行计算的次数。
[idx,C]=kmeans(___) 在 k×p 矩阵 C 中返回 k 个簇质心的位置。
[idx,C,sumd]=kmeans(___) 在 k×1 向量 sumd 中返回簇内的点到质心距离的总和。
[idx,C,sumd,D]=kmeans(___) 在 n×k 矩阵 D 中返回每个点到每个质心的距离。

距离计算参数表


实例

使用某校学生10天的校园食堂消费数据进行转换、数据筛选、数据集成和数据的归一化处理预处理。最后,利用K-means聚类算法,选择欧几里得计算距离,将消费人群分成了三类:低消费水平、中消费水平、高消费水平,通过聚类分析,得出学生有关的消费情况数据为学校提供生活补贴的决策对象的选择提供一定的数据支撑。

程序

clc;
clear all;
close all;
%加载数据
data = importdata('DATA.txt');
data1 = data.data;
[m,n] = size(data1);
%加载每个人的消费次数的数据
data2 = importdata('DATA1.txt');
data3 = data2.data;
[m1,n1] = size(data3);
%求每个人分段的消费记录的位置
data4 = [data3(1,2) ;data3(1,2)+data3(2,2)];
for i = 3:m1
    data4(i) = data4(i-1)+data3(i,2);
end
%初始化
sumc = zeros(m1,1);
sumc(1) = sum(data1(1:10,2));%每个人10天的花费累加计算
%一共有m1个人的消费记录
for i = 2:m1
    for j = data4(i-1)+1:data4(i)
    sumc(i) =  sumc(i)+data1(j,2);
    end
end
data3(:,3) = sumc;
data3(:,4) = 1:m1;
%归一化每个人的10天总的消费数据
max_1 = max(data3(:,3));%求最大值
min_1 = min(data3(:,3));%求最小值
mean_1 = mean(data3(:,3));%求平均值
y = (data3(:,3)-min_1)./(max_1-min_1);%归一化处理数据
data3(:,5) = y;%存储归一化的数据到data3
figure;
plot(data3(:,4),y,'+r');
xlabel('序号');
legend('原始数据');
k = 3;
k1 = 6;%聚类重复次数为k1次
[idx,C,sumD,D]=kmeans(y,k,'dist','sqEuclidean','Replicates',k1);
%聚类
%把样本聚为3类,距离度量函数为欧氏距离,聚类重复次数为k1次
%Idx为m个整数,且属于1到K之间的数;
% 聚类中心C
% sumD为1*K的和向量存储的是类内所有点与该类质心点距离之和;
% D为m*K的矩阵,存储的是每个点与所有质心的距离
% %最后显示聚类后的数据
c1 = [];
c2 = [];
c3 = [];
for i = 1:m1
    if idx(i) == 1;
        c1 = [c1;i y(i) ];
    elseif idx(i) == 2;
        c2 = [c2;i y(i)];
    else idx(i) == 3;
         c3 = [c3;i y(i)];
    end
end
% 归一化数据的边界数据还原
fprintf('第一类消费水平的边界[%f  %f]   对应的实际消费额是:[%f  %f]\r\n',...
    [min(c1(:,2)) max(c1(:,2))  (min(c1(:,2))*(max_1-min_1)+min_1)  ...
    (max(c1(:,2))*(max_1-min_1)+min_1)]);
fprintf('第二类消费水平的边界[%f  %f]   对应的实际消费额是:[%f  %f]\r\n',...
    [min(c2(:,2)) max(c2(:,2))  (min(c2(:,2))*(max_1-min_1)+min_1)  ...
    (max(c2(:,2))*(max_1-min_1)+min_1)]);
fprintf('第三类消费水平的边界[%f  %f]   对应的实际消费额是:[%f  %f]\r\n',...
    [min(c3(:,2)) max(c3(:,2))  (min(c3(:,2))*(max_1-min_1)+min_1)  ...
    (max(c3(:,2))*(max_1-min_1)+min_1)]);
fprintf('三类中心C:%f  %f  %f\r\n',C(1,1),C(2,1),C(3,1));
figure;
plot(c1(:,1),c1(:,2),'r+');
hold on;
plot(c2(:,1),c2(:,2),'g+');
hold on
plot(c3(:,1),c3(:,2),'b+');
legend('第1类消费水平','第2类消费水平','第3类:消费水平');
xlabel('序号');
data3(:,6) = idx;
%归一化数据的边界数据还原
fprintf('第一类消费水平“高”的边界[%f  %f]   对应的实际消费额是:[%f  %f]\r\n',...
    [min(c1(:,2)) max(c1(:,2))  (min(c1(:,2))*(max_1-min_1)+min_1)  ...
    (max(c1(:,2))*(max_1-min_1)+min_1)]);
fprintf('第二类消费水平“中”的边界[%f  %f]   对应的实际消费额是:[%f  %f]\r\n',...
    [min(c2(:,2)) max(c2(:,2))  (min(c2(:,2))*(max_1-min_1)+min_1)  ...
    (max(c2(:,2))*(max_1-min_1)+min_1)]);
fprintf('第三类消费水平“低”的边界[%f  %f]   对应的实际消费额是:[%f  %f]\r\n',...
    [min(c3(:,2)) max(c3(:,2))  (min(c3(:,2))*(max_1-min_1)+min_1)  ...
    (max(c3(:,2))*(max_1-min_1)+min_1)]);
fprintf('三类中心C:%f  %f  %f\r\n',C(1,1),C(2,1),C(3,1));
figure;
plot(c1(:,1),c1(:,2),'r+');
hold on;
plot(c2(:,1),c2(:,2),'g+');
hold on
plot(c3(:,1),c3(:,2),'b+');
legend('第1类消费水平:高','第2类消费水平:中','第3类:消费水平:低');
xlabel('序号');
data3(:,6) = idx;%索引保存
count1 = find(data3(:,6)==1);%记录消费水平为低的序号
count2 = find(data3(:,6)==2);%记录消费水平为中的序号
count3 = find(data3(:,6)==3);%记录消费水平为高的序号
xlswrite('消费水平高.xlsx',data3(count1,:));
xlswrite('消费水平中.xlsx',data3(count2,:));
xlswrite('消费水平低.xlsx',data3(count3,:));
xlswrite('名单1.xlsx',data3,'sheet1','C2:H2234');

1.首先利用excel对原始数据进行数据处理,并且用MATLAB对数据进行归一化。

2.kmeans聚类

第一类消费水平“高”的边界[0.249933  1.000000]   对应的实际消费额是:[186.500000  744.700000]
第二类消费水平“中”的边界[0.143779  0.249530]   对应的实际消费额是:[107.500000  186.200000]
第三类消费水平“低”的边界[0.000000  0.143241]   对应的实际消费额是:[0.500000  107.100000]
三类中心C:0.303135  0.196416  0.090835

参考资料

https://ww2.mathworks.cn/help/stats/kmeans.html


本文内容来源于网络,仅供参考学习,如内容、图片有任何版权问题,请联系处理,24小时内删除。


作 者 | 郭志龙
编 辑 | 郭志龙
校 对 | 郭志龙

相关推荐

当Frida来“敲”门(frida是什么)

0x1渗透测试瓶颈目前,碰到越来越多的大客户都会将核心资产业务集中在统一的APP上,或者对自己比较重要的APP,如自己的主业务,办公APP进行加壳,流量加密,投入了很多精力在移动端的防护上。而现在挖...

服务端性能测试实战3-性能测试脚本开发

前言在前面的两篇文章中,我们分别介绍了性能测试的理论知识以及性能测试计划制定,本篇文章将重点介绍性能测试脚本开发。脚本开发将分为两个阶段:阶段一:了解各个接口的入参、出参,使用Python代码模拟前端...

Springboot整合Apache Ftpserver拓展功能及业务讲解(三)

今日分享每天分享技术实战干货,技术在于积累和收藏,希望可以帮助到您,同时也希望获得您的支持和关注。架构开源地址:https://gitee.com/msxyspringboot整合Ftpserver参...

Linux和Windows下:Python Crypto模块安装方式区别

一、Linux环境下:fromCrypto.SignatureimportPKCS1_v1_5如果导包报错:ImportError:Nomodulenamed'Crypt...

Python 3 加密简介(python des加密解密)

Python3的标准库中是没多少用来解决加密的,不过却有用于处理哈希的库。在这里我们会对其进行一个简单的介绍,但重点会放在两个第三方的软件包:PyCrypto和cryptography上,我...

怎样从零开始编译一个魔兽世界开源服务端Windows

第二章:编译和安装我是艾西,上期我们讲述到编译一个魔兽世界开源服务端环境准备,那么今天跟大家聊聊怎么编译和安装我们直接进入正题(上一章没有看到的小伙伴可以点我主页查看)编译服务端:在D盘新建一个文件夹...

附1-Conda部署安装及基本使用(conda安装教程)

Windows环境安装安装介质下载下载地址:https://www.anaconda.com/products/individual安装Anaconda安装时,选择自定义安装,选择自定义安装路径:配置...

如何配置全世界最小的 MySQL 服务器

配置全世界最小的MySQL服务器——如何在一块IntelEdison为控制板上安装一个MySQL服务器。介绍在我最近的一篇博文中,物联网,消息以及MySQL,我展示了如果Partic...

如何使用Github Action来自动化编译PolarDB-PG数据库

随着PolarDB在国产数据库领域荣膺桂冠并持续获得广泛认可,越来越多的学生和技术爱好者开始关注并涉足这款由阿里巴巴集团倾力打造且性能卓越的关系型云原生数据库。有很多同学想要上手尝试,却卡在了编译数据...

面向NDK开发者的Android 7.0变更(ndk android.mk)

订阅Google官方微信公众号:谷歌开发者。与谷歌一起创造未来!受Android平台其他改进的影响,为了方便加载本机代码,AndroidM和N中的动态链接器对编写整洁且跨平台兼容的本机...

信创改造--人大金仓(Kingbase)数据库安装、备份恢复的问题纪要

问题一:在安装KingbaseES时,安装用户对于安装路径需有“读”、“写”、“执行”的权限。在Linux系统中,需要以非root用户执行安装程序,且该用户要有标准的home目录,您可...

OpenSSH 安全漏洞,修补操作一手掌握

1.漏洞概述近日,国家信息安全漏洞库(CNNVD)收到关于OpenSSH安全漏洞(CNNVD-202407-017、CVE-2024-6387)情况的报送。攻击者可以利用该漏洞在无需认证的情况下,通...

Linux:lsof命令详解(linux lsof命令详解)

介绍欢迎来到这篇博客。在这篇博客中,我们将学习Unix/Linux系统上的lsof命令行工具。命令行工具是您使用CLI(命令行界面)而不是GUI(图形用户界面)运行的程序或工具。lsoflsof代表&...

幻隐说固态第一期:固态硬盘接口类别

前排声明所有信息来源于网络收集,如有错误请评论区指出更正。废话不多说,目前固态硬盘接口按速度由慢到快分有这几类:SATA、mSATA、SATAExpress、PCI-E、m.2、u.2。下面我们来...

新品轰炸 影驰SSD多款产品登Computex

分享泡泡网SSD固态硬盘频道6月6日台北电脑展作为全球第二、亚洲最大的3C/IT产业链专业展,吸引了众多IT厂商和全球各地媒体的热烈关注,全球存储新势力—影驰,也积极参与其中,为广大玩家朋友带来了...